
mlelr

A Reference Implementation of Logistic Regression in C

Scott A. Czepiel∗

Abstract

This is the accompanying documentation for mlelr, a basic reference implemen-
tation of maximum likelihood estimation for logistic regression models using the C
programming language.

Contents

1 Preface 2

2 Introduction 4

3 Program Design 5
3.1 The Language Question . 5
3.2 Statistical Package vs. Utility Program . 7
3.3 C Header Files . 8
3.4 Module Organization . 8
3.5 Makefiles . 10
3.6 Return Values and Function Parameters . 10
3.7 Second-guessing the User . 11
3.8 Generality and Compromise . 12
3.9 Wrappers . 13
3.10 Logging . 14
3.11 Constants . 15
3.12 Security . 16
3.13 Freedom . 17

4 Data Management 17

∗Updated versions of this document, additional resources, contact information, and source code are
available at http://czep.net/stat/mlelr.html

mlelr: A Reference Implementation of Logistic Regression in C 2

5 Program Flow 22
5.1 Installation . 22
5.2 Program Use . 23
5.3 Command Syntax . 25
5.4 Import a new dataset . 26
5.5 Print a dataset . 28
5.6 Univariate frequency tabulation . 28
5.7 Assign a weight variable to a dataset . 30
5.8 Set a global option . 31
5.9 Estimate a logistic regression model . 31
5.10 Other commands recognized by the parser 39

6 Examples 39
6.1 Alligator dataset . 40
6.2 Ingots dataset . 43
6.3 UCLA dataset . 45

7 The Newton-Raphson Method 48

8 Concluding Remarks 54
8.1 Comments . 54
8.2 Lines of code . 54
8.3 Version numbering . 55
8.4 Future work . 55
8.5 Development environment . 56
8.6 Thank you . 57

9 References 57

1 Preface

In January, 2002 I began work at a market research firm specializing in online survey data for
the film industry. My first task was to launch a new tracking product. We had 3 months
to begin delivering results. The basic requirement involved fitting approximately 20,000
logistic regression models to estimate half a million predicted probabilities, and delivering
the results in neatly formatted Excel files. The data were compiled every night at midnight
Pacific time. Results were expected by 6:00 am Eastern time.

The first prototype I built in SAS ran in just under 17 hours. I had a powerful Xeon
workstation with 512 MB of RAM and screaming1 fast 15k SCSI disks. At this point the
astute reader may suggest that the problem could easily be run in parallel, perhaps using a
cluster of machines that could easily allocate partitions of the problem space across multiple

1The disks did indeed scream. SCSI disks are very audible during read activity and I was able to tune my
program by simply listening to the disks while watching the screen, to know when it was time to optimize
disk access. For future reference, don’t put 20,000 sql calls in a for loop. Run one giant query and store the
results in memory for the duration of the program. The program will run much faster, and your ears will
appreciate it!

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 3

nodes. Bear in mind however that this era predates map-reduce by about 5 years, and the
only cluster I had experience with at the time was of the Beowulf variety, and most of these
had been toy projects of old PCs strung together in late night hacking sessions back in our
grad school data lab. Needless to say, parallelization, while an oft-dreamed panacea, simply
wasn’t in the realistic realm of practical design. After some weeks of tuning I managed to
reduce the run time to about 6 hours. That wasn’t going to win us any clients.

With 6 weeks remaining until launch day, I made the arrogant recommendation that
I simply write a custom C program to handle the logistic regressions, leaving the data
management and reporting in SAS. In a fit of blind trust, my boss agreed and then I
had to make good on my promise. It was the most intense 6 weeks of my professional
career, but come April 1, the system launched on time, with only minor issues that were
quickly ironed out in a point release 3 weeks later. That system remained in production
for 3+ years before a rewrite by which time we had won the business of 7 major studios
and effectively obliterated the competition. Over those first 3 years this tracking program
generated somewhat north of $60 million in revenue.

The average runtime of the final program was around 5 minutes. While the impressive
runtime was a great source of personal achievement, and made it possible to iterate, test,
and deliver the results quickly, it was not the primary source of our competitive advantage.
Our competition, the industry standard for over 20 years, relied on unadjusted unweighted
tabulations of the survey data. This made the results highly susceptible to large variances
at small sample sizes, particularly when one was interested in a narrow target segment of
the population such as unmarried Latina women 20-29 with a college degree who are fans of
Nicolas Cage. Tracking such small samples daily is far too noisy to make accurate general-
izations. Our innovation was to model our categorical dependent variables (e.g. Awareness
of a given film or interest on a 5-point scale to see the film). This provided stability to the
estimates, enabling us to accurately report on trends in very narrow population segments.
The proof that our methods worked was demonstrated by our ability to predict the opening
weekend box office better than anyone else in the industry. Those efforts are worth their
own discussion but that is another story which will have to wait until its time has come.

Since a great deal of money was being paid for these results, our attorneys wanted some
third party validation that the system was really doing what it was designed to do and not
simply spitting out various random numbers into the spreadsheets. After all, the whole
thing hinged on the work of a sociology grad school dropout. My self-assuredness evidently
wasn’t a convincing enough selling point for the studio finance departments. So we hired
a very expensive consulting statistician from NYU who reviewed every line of code I had
written. He had a very antagonistic style, and justifiably so, you don’t become a very
expensive consulting statistician by being nice. And in market research, where statistical
sins are committed en masse with reckless abandon, it behooves a consulting statistician to
adopt a confrontational and exceedingly condescending manner. Despite this, he found no
fault in my code. Still, he wouldn’t be convinced until I wrote a publication worthy research
paper thoroughly describing the theory of maximum likelihood estimation as it pertains to
logistic regression along with the internals of the implementation of the Newton-Raphson
iterative procedure that I had used in my program. The result of that exercise is my paper
Maximum Likelihood Estimation of Logistic Regression Models: Theory and Implementation
[1] which the attorneys allowed me to publish under my own name. Unfortunately, they

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 4

were also very clear that the code was not mine and would be kept under lock and key.
In the years since I wrote this paper I have received many requests for a fully functioning

program to do logistic regression rather than the small snippets I use in the paper to
illustrate the basics of the implementation. Since I didn’t own that code I was unable to do
so and I didn’t feel comfortable working on a clone since it would inevitably resemble the
original very closely. Now that it has been 12 years and the original program is no longer in
production (and the original company I worked for has changed hands a few times), I feel
confident that I can legally produce and distribute a simple open source implementation of
logistic regression in C, primarily for teaching purposes if not also for the sake of posterity.
That said, this work is a complete rewrite, no parts were reused except for those already in
the public domain, the sources for which are all adequately documented in the code.

Over the past few years my recommendation to anyone asking for a C program to do
logistic regression has been to use R. Everything mlelr does could be done in R with a few
libraries and a handful of code, and it would also have the benefit of using an extremely
robust and tested system which will no doubt be more reliable with edge cases than my (or
nearly anyone’s) hand rolled routines. So treat mlelr like a learning tool, but if you want
production quality, use R. Or use SAS, SPSS, Sudaan, or another well respected statistical
package. If you do want to develop your own logistic regression program, you will be well
served by looking into the boost (C++) or gsl (C) libraries. While these libraries will not
automatically provide you with all the features of R’s glm() function, they will help with a
lot of the complicated pieces that aren’t really necessary to reinvent on your own. You could
also look beyond C—Python in particular has a very active community around statistical
programming, and the scikit-learn package in particular provides an excellent environment
in which to conduct logistic regression as well as many other modern machine learning
techniques.

2 Introduction

The primary purpose of mlelr2 is to demonstrate the estimation of baseline-category lo-
gistic regression models by maximum likelihood using Newton-Raphson iteration in the C
language using only standard libraries3. The code should compile cleanly on any POSIX-
compliant GNU/Linux system.

Logistic regression is a highly useful modeling procedure that has evolved into the de
facto standard approach to estimating predictive models for a categorical response variable.
In my paper Maximum Likelihood Estimation of Logistic Regression Models: Theory and
Implementation [1], I provide the mathematical background behind logistic regression and
a brief outline of a computer program to solve the necessary equations. In the current
work, I describe mlelr, a C program which illustrates the logistic regression estimation
process as well as a basic user interface to a dataset structure. The complete source code

2I’ve taken to pronouncing the name as “mealer”. Although its pneumonic quality is debatable, it is
far easier than trying to say each letter separately in rapid succession. It is an endearing, if not enduring,
nickname.

3In the current release version, we do require one non-standard library: the GNU Scientific Library
(GSL), for the implementation of the gamma functions, which is a far better alternative than attempting to
hand-write these difficult functions.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 5

is available both on my website at http://czep.net/stat/mlelr.html as well as at my
GitHub repository at http://github.com/czep/mlelr. The code is released under the
open-source GNU GPL license.

Since the focus of mlelr is the estimation of logistic regression models, there is only
minimal attention devoted to data management and user interface functionality. Features
like variable labels and value labels, recoding, and filtering are not provided. Statistical
methods like t-tests, anova, clustering, factor analysis, are also not implemented. Included
is a basic facility for importing delimited text files, printing a dataset, producing univariate
frequency tables, and of course, execution of a logistic regression equation based on a model
specified by the user.

Again, since the goal with mlelr is to demonstrate logistic regression, there are many
assumptions made in the code about how the procedure is to be carried out. The code
is written specifically for this purpose, so to adapt the code to use, for example, a probit
link function instead of the logit link may require substantial refactoring. By comparison,
fully-featured statistical packages will include a generalized linear modeling procedure for
which the user can choose from a variety of link functions. In addition, mlelr does not
provide the ability to examine fitted values, residuals, ROC curves, split-sample validation,
or any of a number of additional techniques that are essential to model fitting, diagnostics,
and measurement of predictive efficacy.

The approach taken here in building the design matrix and estimating the regression
coefficients most closely resembles that used by PROC CATMOD in SAS. Results obtained
using the glm or vglm functions in R, PROC LOGISTIC or PROC GENMOD in SAS, and
the LOGISTIC REGRESSION procedure in SPSS may differ depending on design coding
of the parameters as well as the underlying algorithms used in the fitting process. It is
important to understand the different assumptions involved in each program’s approach
before comparing them to results from mlelr.

Finally, I wish to emphasize what is already very clearly stated in the GPL license for
this code: there is absolutely NO WARRANTY expressed, implied, or otherwise that ac-
companies this program. It has not been certified by any third-party, and its use constitutes
an acknowledgment that it is entirely your own responsibility to certify the results for your
own purposes. Attempts have been made to validate the results against test cases that I
have personally selected which by no means provide complete coverage of all possible use
cases.

3 Program Design

3.1 The Language Question

Programming language choice is a complex question that involves a little bit of logic and
a little bit of emotion. It is actually rather rare to embark on a project with a completely
unencumbered choice of which language to use. There are practical limitations that often
constrain the choice of language to a small subset of what would otherwise be available
if the programmer had free reign. The intended deployment environment may limit the
available executable file formats or runtime interpreters necessary to run the program. The
target audience of users may place a similar constraint on the chosen language, particularly

Scott A. Czepiel

http://czep.net/stat/mlelr.html
http://github.com/czep/mlelr

mlelr: A Reference Implementation of Logistic Regression in C 6

if installation of ancillary programs, additional third-party libraries or operating systems
cannot easily be made into prerequisites. Legacy systems with which the program must
interact, or required libraries that the program must use are also important factors that
can influence language choice.

In an ideal world, the programmer will be able to use a language that is both well
suited to the task at hand and with which the programmer has a suitable fluency in order
to be productive and efficient. One method by which a programmer can be more efficient
is by taking advantage of an existing stack of technologies that are highly evolved and
readily available, thus greatly speeding up development time and reducing the programmer’s
time spent ‘reinventing the wheel’ or otherwise working on pieces of code that do what
someone else has already done very well in an existing stable library. Business analysts are
trained to focus their organization on core competencies and a programmer’s approach to
programming should be no different—concentrate on the code that truly adds value rather
than the scaffolding and window-dressing that are necessary to encapsulate the program
in a given environment. Choice of programming language is highly important because the
right one can greatly speed development by quickly “getting out of the way” and letting
the programmer focus on the project rather than the tool. In general, a high-level general
purpose scripting language like Python will be ideally suited for rapid prototyping and
implementation of programs with a low to moderate level of complexity. In the case of web
server software, typical projects lend themselves to Ruby simply because the ecosystem
surrounding the platform is modern and mature.

Even today, despite—or perhaps because of—its rich and storied history, its spartan
and often dangerous feature set, the C programming language remains the most versatile
choice for systems programming. C is a lot like Latin: an extremely old language that
is the antecedent of many, more modern, languages—a language that many people can
recognize but don’t necessarily speak. C is easy to read because so many languages have
adopted its syntax, but it is rarely spoken outside of limited, predominantly academic
circles, especially since its more modern descendents, primarily C++ and Java, have become
extremely popular. C is concise to the point of lucid terseness. The C standard library is
very basic, paltry if compared to the ‘batteries included’ style of Python, whose library was
deliberately designed to take the opposite philosophy of C. However, all the important stuff
you read about in Knuth’s The Art of Computer Programming [2] are more than adequately
provided for in C. The programmer has complete control of the hardware—memory, the
processor registers, I/O and other system calls, the bare metal. This power makes C highly
flexible, but also highly precarious, a danger well known by anyone who has ever faced the
dreaded Segmentation fault in their console.

While one could well argue that a reference implementation of a popular statistical pro-
cedure ought to be coded in one of C’s more modern derivatives, as a learning exercise I
find it far more illustrative to demonstrate the procedure using the C language for three
reasons. First, higher level languages and libraries with advanced features and data struc-
tures can add multiple levels of indirection making it difficult to discern how the program
is actually operating. The goal of mlelr is to connect the theory of multinomial logistic
regression with its practical application. Shielding the programmer from the details of the
algorithms involved can mask what is actually being accomplished. This can hinder the
interested student’s learning process. Second, using ANSI C and standard libraries helps

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 7

develop good programming discipline. It also ensures the maximum level of portability and
adaptability of the program. This again highlights the fact that the goal is to demonstrate
the functioning of the statistical model with a minimum of external requirements. Third,
I just like C. Here’s that little bit of emotion coming into play. Programming in C is a
very gratifying experience, reserved for my personal projects where I can choose exactly
what and how I want to code: no legacy systems, no third-party libraries, no organizational
coding standards to abide by to distract from the pure creative process. C is just more fun:
trust me!

In the following sections, I will outline some of the general guidelines I use when ap-
proaching a C program from scratch that have influenced the layout and design of mlelr.
I am by no means a C expert, and some of the advice proffered here may well be ill-advised
in certain circumstances, particularly large-scale systems. My programming experience is
generally limited to small one-man projects, developing programs that solve simple well-
defined problems. If you are involved in a very large project, then the level of discipline
required may necessitate a far more structured approach than what I outline here. Many of
these ideas are also not primarily of my own invention, as I am indebted to three wonderful
books that I urge everyone to read, think about, and use to develop your own program-
ming style. First, Kelley and Pohl’s A Book on C [3]. While you could naturally start
with Kernighan and Ritchie’s The C Programming Language [4], and you certainly can’t
go wrong with the book written by the masters themselves, I find Kelley and Pohl’s book
to be a great resource for a student’s introduction to C. Second, Kernighan and Pike’s The
Practice of Programming [5]. I make repeated use of their sample code and will note their
contributions later in this text. Finally, Expert C Programming: Deep C Secrets [6] by
Peter van der Linden. This is an excellent book that goes beyond the introductory material
and provides a thorough and highly informative understanding of how C works. It’s also a
wonderfully entertaining read.

Keeping in mind the above caveats, the remainder of this section is structured around
various pieces of advice for developing a program in C that will help explain some of the
design decisions made in mlelr. You will likely come across some statements with which
you disagree and I wholeheartedly encourage opposing viewpoints and healthy debate. The
real purpose here is to stimulate thought so you can form your own programming style that
works for you.

3.2 Statistical Package vs. Utility Program

The design of mlelr most closely resembles the philosophy behind command-line UNIX
utilities: do one thing, and do it well. Although there is an interactive mode, you will
probably not spend much time at the mlelr prompt. There is no code editor, no menu
system, nor even a basic Readline environment to make command editing convenient. Quite
frankly, the interactive mode is really only there for demonstration purposes. mlelr will
be most effective when treated as a UNIX utility. Generate a dataset, generate a script
file that mlelr can read from, run the program, then collect and parse the output in an
environment more suitable for scripting.

A statistical package is designed to occupy the opposite end of the user interface spec-
trum, where the user might be expected to spend most of their time within the program.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 8

While most stat packages do have their own batch modes, they typically shine by providing
a fully featured interactive environment designed to guide the user in the exploration of
data and the model building process. Our leaning towards the utility program philosophy
necessitates certain design compromises. We provide only rudimentary editing and data
exploration capabilities because we expect the user to have access to far better tools with
which to accomplish those tasks. At the same time, by concentrating only on what is neces-
sary to perform a logistic regression, the code has minimal distractions and can be readily
understood, adapted, and customized for your own use and learning.

3.3 C Header Files

Each header file should be wrapped in a conditional macro statement to prevent compilation
errors resulting from including the same header multiple times.

#ifndef DATASET_H__

#define DATASET_H__

...

/* declarations */

...

#endif

The purpose of a header file is to declare the public functions that the module makes
available for other modules to call, as well as any structs or constants that logically make
sense to organize within the module’s control. Functions and variables you declare in a
header file should be prefaced by the extern keyword, indicating that the actual definitions
will be contained in a different file. This different file could be the accompanying “.c” file
or even a completely different “.c” file. Note that typedef or struct declarations that do
not declare a variable (and thus, do not require the compiler to reserve storage), do not
need the extern keyword.

For example, in mlelr, the header file in which we declare our dataset structure and the
various functions we define for operating on datasets is called dataset.h. In this header
file, we declare a typedef for our dataset structure which is used throughout the program.
For more detail, please see our discussion of Data Management in Section 4. Remember
that in C, anything declared in a header file is automatically given global scope—there are
no namespaces—so be extremely judicious when making declarations here. If a variable or
function is really only going to be used within the module, don’t declare it in the header
file. Instead, declare it in the C source file with the static keyword.

3.4 Module Organization

Upon uncompressing mlelr, the ‘src’ directory will contain the files listed in Table 1 below.
Kernighan & Pike’s csv library is available in their wonderful book The Practice of

Programming [5]. We use the library for two purposes: 1) to parse and import delimited
data files into a dataset, and 2) to parse user command input for translation into program
flow statements.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 9

Table 1: Source files

Filename Description

csv.c
Kernighan & Pike’s csv library implementation

csv.h
dataset.c

Dataset struct and associated functions
dataset.h
interface.c

User interface functions
interface.h
main.c Program entry point and initialization
Makefile Makefile for use with make

mlelr.c
Logistic regression implementation

mlelr.h
model.c

Model struct and associated functions
model.h
tabulate.c

Support functions for tabulation
tabulate.h

Our dataset module is introduced in the general purpose header file dataset.h which is
imported by most other modules for access to our dataset structure. Here we also declare
several public functions for management of datasets.

/* forward declarations for public functions defined in dataset.c */

extern void init_dataspace (void);

extern int import_dataset (char *handle, char *filename, char delim);

extern dataset *add_dataset (char *handle, int nvars, char **varnames,

int is_public);

extern void add_observation (dataset *ds, double *obs);

extern void print_dataset (dataset *ds, int n, int header);

extern dataset *find_dataset (char *handle);

extern int find_varname (dataset *ds, char *varname);

extern int set_weight_variable (dataset *ds, int var);

extern int find_observation(dataset *ds, double *obs, int n_vars);

extern void sort_dataset(dataset *ds, int n_cols);

The first function, init dataspace, is called in main.c at program invocation after
command line option processing to allocate memory for our global dataspace variable,
which maintains a pointer to all available datasets. We initialize space for a pointer to one
dataset. The add dataset function is used to add new datasets to the dataspace and will
reallocate space in the dataspace as necessary. The import dataset function is described
below in Section 5.4. This is the primary means of reading user data into a dataset for use
in the program.

The add observation function is used only by import dataset but could conceivably
be used if additional data management functionality allowed the user to add observations to
a dataset after the initial import had been completed. print dataset provides a means of

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 10

writing the contents of a dataset to the output. This is useful for sanity checking whether an
import procedure worked as expected. The find dataset function is used for convenience
so that a user can refer to a dataset by its handle. This function will return a pointer to
the first dataset that it finds with the supplied handle.

The mlelr.c and mlelr.h files contain our implementation of logistic regression.
The main.c file is our program’s entry point and contains the main() function. Here,

command line options are parsed and some basic initialization takes place.
The interface.c and interface.h files declare and define all functions for input, out-

put, and interacting with the user.

3.5 Makefiles

make is a very powerful UNIX utility designed to make program compilation and linking
easier. Our Makefile is rather spartan, there are only two targets. Running make will
compile, link, and build the executable, which on GNU/Linux systems will be named mlelr.
Running make clean will remove all object files, debugging, and profiling files, and restore
the src directory to its original state. The complete contents of our Makefile are shown
below:

CC=gcc

CFLAGS=-Wall -g -pg -lm -lgsl -lgslcblas

mlelr: main.o csv.o dataset.o model.o \

interface.o tabulate.o mlelr.o

$(CC) -o mlelr main.o csv.o dataset.o model.o \

interface.o tabulate.o mlelr.o $(CFLAGS)

clean:

rm -f mlelr gmon.out main.o csv.o dataset.o model.o \

interface.o tabulate.o mlelr.o

It may be necessary to adjust some parameters, particularly if you do not have access
to the GNU compiler collection, gcc. The -g (debugging output) and -pg (profiling output)
options can be removed if you have no interest in the additional features provided by these
flags. If you’re really cool, you can add some optimizer settings, but you do so at your own
risk and are entirely responsible for knowing how these optimizer settings can affect the
stability of the program. As is, the resulting executable should be able to run on an i386
architecture, so if you have an old 386 machine siting in the attic somewhere, and a version
of linux old enough to run on it, there is no reason our program will not be able to compile
on this rusty yet trusty architecture.

3.6 Return Values and Function Parameters

In most situations, especially in cases where abnormal situations may be encountered which
we wish to alert to the calling function in the form of a specific return value, we want
our functions to return an int and use that return code to signal the overall result of the
function’s performance. The convention is to return 0 for success and some non-zero integer

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 11

to signal some kind of exception. The calling function can then handle or ignore the return
value at its peril. Typically, we return 0 for success because there is only one way for a
function to succeed, but many many ways in which it can fail!

When a function requires numerous parameters and will typically return numerous vari-
ables, what is the cleanest way to design such a function? Consider all the variables that
a logistic regression function needs to know about: the dependent variable, array of inde-
pendent variables, specification of direct effects and interaction terms—and will generate a
great deal of output—the parameters of the fitted model, the Wald chi-square values and
statistical significance tests of the parameters, the overall log likelihood and deviance of the
model, the design matrix used, etc. In short, there is a great deal of information that needs
to be passed into and out of this function. To simplify the code, we wrap everything we
need in a pointer variable to a structure that contains both the required input arguments as
well as the output variables that will be sent back to the calling routine when processing is
complete. For our mlelr function, we define a special struct in model.h called model. Ini-
tial allocation of the arguments needed to run the model occur in the cmd logreg function
after syntax checks are completed (see Section 5.9 for details. Then, additional allocations
are conducted inside the function to reserve space for all the various return values. Since
we are passing this structure as a pointer, it can easily be read from and written to by both
the calling and called functions.

typedef struct {

char *dvname; /* name of the dependent variable */

int dv; /* dependent variable index in dataset */

int numiv; /* number of independent variables */

int maxiv; /* space allocated for iv array */

char **ivnames; /* names of the independent variables */

int *iv; /* indices of the independent variables (main effects only) */

int *direct; /* for each iv, stores 1 if direct effect else 0 */

int numints; /* number of interactions */

int maxints; /* space allocated for interactions matrix */

int *inttc; /* interaction term count */

int **ints; /* interactions matrix, rows=interactions, cols=index in numiv */

char **intnames;/* array of interaction names, eg. "var1*var2" */

dataset *xtab; /* cross-tabulation of all model variables */

dataset **freqs; /* array of frequency tables for all model variables */

} model;

Now, when we call mlelr from cmd logreg, the call is very simple:

retval = mlelr(ds, mod);

where mod is initially allocated in cmd logreg and ds is a pointer to the dataset for
which the model will be run. The return value can be used to handle the various difficulties
encountered by the logistic regression procedure.

3.7 Second-guessing the User

“You told me to do that, so I did.” This is our basic philosophy when it comes to dealing
with unexpected or undesirable user input. Users can and will, either by mistake, curiosity,

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 12

or just plain old dumbness, do something that stretches the boundaries of common sense
and possibly bring the system to a grinding halt. If the user says they want to load a 4GB
file on a system with 1GB of main memory, we’re not going to try and stop them. If the
user wants to print the entire contents of a dataset with a hundred thousand observations,
we will happily let them watch as we output every line to the screen. If the user wants to
treat a continuous variable with thousands of levels as a categorical variable (as opposed to
a direct effect) in a model, again, we will let them do what they want.

For large projects, user interface design can evolve a complicated set of checks and
balances, constraints, and prompts to balance what is expected and appropriate behavior
against what the user has requested to do. We prefer to keep things as simple as possible
for our demonstration program, and that typically means attempting exactly what the user
has requested. The only stipulations are that our command syntax rules are followed. For
example, if the user attempts to specify a main effect after an interaction effect, we will fail
the syntax check because we need to abide by a consistent definition of our design matrix
which places all interaction effects after the main effects.

Another area we will fail to allow is if the user wants to specify an interaction effect
without also including the components of the interaction as main effects. Although it is
statistically ill-advised to run such models, many programs will allow this anyway. While
certainly more flexible, this places additional requirements on the construction of the design
matrix that are not easily accounted for. Specifically, we tabulate each main effect in order
to know how many columns are required to store it—as well as any interactions in which
it is involved—in the design matrix. To handle interactions that include variables that are
not specified among the main effects adds additional complexity that does not materially
contribute to overall functionality. It also forces the user to reconsider their choice. If you
insist on running such a model, simply create a new variable, or set of new variables, that
express the interaction effect you are intending and then specify the new variable as a main
effect in the model. The end result will be the same.

3.8 Generality and Compromise

A common trade-off in programming involves the level of generality vs. specificity that is
required to solve a particular problem. If you make the solution too specific, it will have only
one possible use—it will not be possible to reuse it or easily adapt it to be used elsewhere.
This is often fine and programs like these are often thought of as “one-off” or “ad-hoc”
solutions. At the other end of the spectrum, if you attempt to design a perfectly generic
solution, you may find yourself descending into an absurd level of abstraction.

Reuse is a lofty goal, and laziness is a virtue because as a programmer you want to follow
the DRY principle: Don’t Repeat Yourself. Having too much one-off code that is specific to
only one problem means that you will be writing far more code than you need to. Sure, it’s
certainly easy to copy and paste, but every time you do so you make the code more difficult
to maintain. What if you want to make changes? Now you have to make the same change
in multiple places. And worse, what if you find a bug? By copying and pasting, you are
just adding more bugs to your program.

This is the reason design patterns were invented and have become so popular in object
oriented programming methodologies. If you have multiple problems that share a common

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 13

pattern, it is best to solve the general pattern first so you can have one solution that is
adaptable to many different situations. Abstraction is a necessary task at the outset of
program design. Yet, there is an opposite extreme of ‘analysis paralysis’ where you can get
so caught up in layers of abstraction that it no longer becomes a convenience. It becomes
instead a hindrance to solving your problems.

Thus, the approach that we find most sensible is to seek a middle ground of generality
and then weigh the various compromises which a given level of generality imposes on us. You
will find examples of this approach throughout the various design decisions we have made
in mlelr. Sometimes we opt for a simpler, less generic, more specific solution and at other
times it is necessary to take a step back, refactor the design into something more abstract so
that it can be hardened into a more durable solution that is easier to maintain. Evaluating
the compromises we make along the way is essential in finding the optimal solution.

3.9 Wrappers

The C standard library is your best friend. But, sometimes you need to offer your friends a
little help—soothe over their mistakes, play up their good aspects, and provide some cover
for them when the vice-principal is interrogating them for ditching class. Help your friends
and they’ll help you in return. It is rarely a good idea to completely reimplement a library
function, but it is often necessary to wrap the calls to handle return values and conduct
appropriate error-checking on the results.

In our case, we follow the lead of Sirs Kernighan and Pike in wrapping calls to malloc,
realloc, and strdup—three functions which we use to request memory from the operating
system. These calls will return a NULL pointer if the memory allocation has failed. If this
occurs, a more fully-featured program would initiate a graceful shutdown, or perhaps ask
the user whether to save state, abort, retry, ignore, yadda yadda. In mlelr we don’t really
care about being graceful. If we can’t allocate the memory we need in order to continue, we
just throw a fatal error and exit immediately. So, every time we call one of these memory
allocating functions, we will test the result for NULL, and if so, print an error message, and
exit the program. These functions are declared in dataset.h and available to any module
in the program.

/* safe allocation of memory */

extern void *emalloc (size_t n);

extern void *erealloc (void *vp, size_t n);

extern char *estrdup (char *s);

Implementation of emalloc:

void *emalloc (size_t n) {

void *p;

p = malloc(n);

if (p == NULL) {

eprintf("Fatal error! malloc of %u bytes failed:", n);

}

return p;

}

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 14

We also use a custom eprintf function (again courtesy of Kernighan and Pike), which
handles buffer flushing.

Wrappers are useful for our own functions as well as for library functions. For example,
our logistic regression procedure is executed by the mlelr function in mlelr.c, but this
is not immediately called in the user interface. Instead, we have use cmd logreg defined
in interface.c to handle syntax checking and prepare the model structure for use in the
actual procedure call.

3.10 Logging

Logging is an essential feature of any moderately sized program, not only of benefit to
the end user to understand what is currently going on in the program, but also to the
programmer for diagnostic and debugging purposes. There are a variety of approaches to
logging, with the simplest being to scatter some tactically located printf statements in
critical sections of code. On the other end of the spectrum are far more complicated logging
libraries with rich feature sets and learning curves that quickly make one realize why so
many programs have such poor logging capabilities. Our solution is definitely on the light-
weight side of this range, and that’s the way we like it. Our demonstration program is large
enough to require some logging features but not large enough to require a dedicated logging
thread.

By default, log messages are written to stderr to distinguish them from program output
which is typically written to stdout. In console mode, these are equivalent, but we provide
command-line options to redirect logging and output to external files, if desired. The very
first thing that mlelr does is to initialize its input/output files and the logging level with
the init function defined in main.c

void init (void) {

LOGFILE = stderr;

OUTFILE = stdout;

INPUTFILE = stdin;

LOGLEVEL = INFO;

}

These are all global variables declared in interface.h. If you don’t like global variables,
that’s perfectly fine. I don’t really like them either, so that makes two of us. We define three
const ints in interface.h that help us determine whether log messages are appropriate
for the current log level.

int LOGLEVEL;

const int SILENT = 0;

const int INFO = 1;

const int VERBOSE = 2;

The LOGLEVEL variable is set by default to INFO in main’s initialization function. Logging
is done by a custom function printlog which is a wrapper around vfprintf, a variant of
printf that allows for variable arguments to print to a file.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 15

void printlog (int loglevel, char *format, ...) {

va_list args;

if (loglevel <= LOGLEVEL) {

va_start(args, format);

vfprintf(LOGFILE, format, args);

va_end(args);

}

}

The key insight here is the if statement which tests the loglevel argument passed in the
function call against the LOGLEVEL global variable indicating the current level of verbosity
that should be used in logging. As evident in the code above, a log message will only be
printed if the loglevel argument is less than or equal to the global LOGLEVEL. So, when, by
default, the global LOGLEVEL is set to INFO, calls to the printlog function with a loglevel
of VERBOSE will not be printed. This allows us to suppress some log messages unless the
user has explicitly asked for verbose mode.

3.11 Constants

Constant values are variables that are set at compile time and not expected to change
throughout the life of the program. These are also referred to rather disparagingly as
“magic numbers.” There are four basic ways of defining constants in C, listed in order from
“worst” to “best”, they are:

while (x == 42) {

#define MAXBUFFER = 1024

enum { NOMEM = -2 };

const double PI = 3.1415926

Literals are so often frowned upon because they offer no guidance as to what they mean
and, being hard-coded, present maintenance challenges if and when they need to change.
This is why “magic numbers” are frustrating when encountered in code. What does the
number mean? If we change it in one place, how many other places need to be changed?
How does it interact with other variables or constants? It is impossible to tell, because
they’re just magic.

Macro variables used as constants are barely better than using literals directly. Essen-
tially, the pre-processor will simply do a global search and replace of the macro variable
name with its value, which means the compiler has no chance of detecting errors that may
arise from bad comparisons or trying to use the value with a data type with which it is not
compatible. For this reason, one of the latter two methods are preferable.

Enumerated types will only work with integral values, and can be useful in certain cases
like when you are evaluating various return values from a function and want to have some
conditional logic using an if-else or switch statement without having to hard-code the return
values in the code. Still, this bypasses any compiler type checking and is really not much
cleaner than using macro variables.

By defining a proper variable and using the const keyword, you are fully enabling the
compiler to do its job. Using const, the compiler understands your data and can ensure

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 16

two things: first, you will be guarded against type mismatch operations, and second, the
compiler will not allow you to change the value of the variable. This is usually the best
method of defining a constant value for use throughout the program.

To distinguish constants from regular variables, we like to use all caps. This way the
variable name is SCREAMING at you that there is something a little different about it to
which you should pay some careful attention. Note, however, that we also use all caps for
special global variables like the LOGLEVEL and input/output file handles. This inconsistency
may be too much for small minds to bear, in which case, we do suggest you fix it to your
own liking. Just don’t get too religious about it—to my knowledge nobody has been sent
to Hell for being slightly inconsistent in their naming of variables.

3.12 Security

Since I have no special skills in security engineering nor did I consciously set out to design
and code this program using defensive techniques, and given the fact that this program
eagerly laps up user data with only the barest forms of validation, it is safe to assume, in
light of how readily security flaws are found in systems intentionally designed to be hardened
against them, that there are numerous exploitable holes in this program that would enable
a hacker of the 1337 variety to handily gain control of the system and bring the world
financial system to its knees (again).

There are actually two issues involved here. First, this is a young program that accepts
user input. By young, I mean that testing has thus far primarily been concerned with
benign well-formed datasets designed to work within the system, not destroy it in a raging
fit of teen angst. We’re not treating our datasets with suspicion, we’re simply trying to get
them to work. Testing has revealed that loading an improperly formatted dataset could
result in a segfault. This is because we allow commands to be run even if an import has
failed. What happens if you run an import command on top of an existing dataset? Such
questions have never been a concern because we are expecting the user to try to make things
work, not break them. I’m almost certain that someone could craft a dataset that would
smash the stack and allow an attacker to run arbitrary code. This is the nature of user
input. The fact that we’re not even superficially attempting to guard against attacks nearly
guarantees that a dedicated attack will succeed.

The second issue is that security engineering is a highly specialized domain with in-
stitutional knowledge and an arsenal of techniques employed to detect and guard against
potential exploits. The most I’ve thought about security while writing this program has
been “try to use strncat instead of strcat.” Any time there is a risk that bad guys would
have an incentive to break your program—if your system is dealing with PII for example—
then having a professional security engineer on the team is absolutely critical. You really
want someone to tell you that you shouldn’t even run a “Hello, World!” program without
a proper security audit.

Despite the fact that I completely fail to follow my own advice and thus contribute to
the world yet another insecure program, I point this out because it nevertheless is important
enough that everyone should at least be aware of security implications even in the simplest
of programs and even where risk is considered to be minimal. In the spirit of a good
old-fashioned crowd-sourced challenge, I offer the following bug bounty: one hand-written

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 17

personally addressed postcard will be sent to the first person who can demonstrate an
exploit involving mlelr which will allow the user to run arbitrary code. I realize this is
not much of a bounty, but I am very cheap. As an extra bonus, I will also throw in my
acknowledgment and admiration of your elite skillz. Surely that’s enough incentive!

To close this section I will make one safe, and serious, recommendation: please do not
allow mlelr to run in an untrusted environment or on any system that contains sensitive
data.

3.13 Freedom

One thing you may note about mlelr that is bound to draw the ire of the particularly
anally-retentive, is that there are frighteningly few free statements in the program. As a
stark example, we provide no facility to “delete” a dataset or otherwise release the memory
that has been allocated to it. This means our program will leak like a sieve. It’s possible to
import multiple datasets into the dataspace, but not to remove any of them. zomg! But I
was taught never to write a malloc statement without also writing the corresponding free

statement! And this is the beauty of free software: if you don’t like it, you can just go
and do it yourself.

The truth of the matter is that this functionality is not entirely necessary for our ref-
erence implementation. We expect the user to import a dataset, specify and run a logistic
regression model, and then exit the program. We don’t anticipate long-running sessions
with multiple datasets in use simultaneously.

And the real truth of the matter is that the previous paragraph is a complete ratio-
nalization and the bottom line is in addition to being cheap, I am also lazy. And being a
lazy programmer means knowing that the return statement is the easiest and most reliable
way to handle memory management. All jokes aside, in a production system, it would
be imperative to properly free memory from datasets or model structs that are no longer
pertinent.

4 Data Management

Popular statistical packages offer their own complete programming environments in order to
provide users with the flexibility needed to manage data and prepare it for use in statistical
procedures. Such systems can include their own scripting language, possibly with macro
pre-processing facilities, a lexer and parser, and other features that enable users to extend
and adapt the system to solve complex problems in their own domain. To be as generic
as possible requires a great deal of abstraction in the design of essential data structures.
Browsing the R source code will reveal macro functions for car and cdr operations. These
concepts are borrowed from Lisp and enable the R parser to manage an object-oriented
environment with powerful features like function closures. This underscores the simplicity
and extensibility of the R language (arguably, also its insanity-inducing frustration). Un-
fortunately, it can also be difficult to understand program code when it is wrapped up in
these various layers of abstraction.

Since mlelr is primarily a learning tool, many of the facilities provided in a full statistical
programming environment would be unnecessary overkill. Additional layers of complexity

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 18

often obfuscate the intent of the code and how it works. For mlelr we would like the
data model and associated data management facilities to be as simple as possible—but no
simpler. In other words, we want data access functionality that is easy to use, but also
generic enough to handle arbitrary datasets loaded by the user at run time. This implies
that we should be able to accept any number of observations and variables, and that we
should provide the user with the ability to refer to datasets and variables by name. We
will want some basic scripting functionality, without which the only alternative would be
for the user to recompile the program source code every time they wanted to do something
different. As noted above in the section on Generality and Compromise (Section 3.8), we
cannot be entirely generic and will need to make some compromises by enforcing some
restrictions that we consider reasonable for our demonstration program.

The first compromise we are going to make is to require that all values be stored as
double-precision floating point variables. This means we will not be able to use datasets
that contain string variables. This would be unacceptable in a fully-featured statistical
package, but ours is not, and the extra boiler-plating that is required in order to support
string variables really doesn’t belong in a reference implementation which will make no direct
use of them. In SAS, SPSS, and R, string variables that are used as categorical variables in
statistical procedures are converted to numeric types in the actual processing of the routines.
SAS and SPSS will use formats or value labels to map string values to underlying numeric
values, and R will use factors to do the same thing. Since the underlying data needs to be
numeric anyway, and since we are not designing a general-purpose data management tool,
we find it not too inconvenient a requirement that all input data must be numeric. Thus,
when preparing a dataset for use with mlelr, use whatever environment is convenient to
recode any string variables (e.g. {Yes, No}) to nice numeric variables (e.g. {1, 0}). Integers
are automatically promoted to doubles, and exponential notation is acceptable—basically
anything that looks like a number can probably be successfully parsed as a number.

Among the numerous ways of parsing input data, we have defined a special function for
this purpose:

static int string_to_double(char *str, double *d);

This is defined in dataset.c, and is used exclusively by the import dataset function
to read in data from an external file. This custom function is essentially a wrapper around
strtod defined in <string.h> in the C standard library. The manpage for this function
has more detail on its return codes. In our use case, we will not pay too much attention to
the return codes, except to set the value equal to our SYSMIS constant if the conversion to
double was unsuccessful.

The function fscanf, derived from scanf defined in <stdio.h> is an alternative method
of reading input from a file and, using format specifiers, attempt to convert the resulting
string into a floating point number. However, scanf and its derivatives handle unexpected
input poorly and since the return value is the number of characters successfully read, it
is not always possible to know if there was a problem with the input. In addition, it is
not possible to vary between exponential notation and standard decimal notation since you
must hard-code the format specifier into the function call. For these reasons, we use strtod
as the safer, more flexible alternative.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 19

Now that we have defined a way to read data from a file, what do we do with it after
reading it in? We expect most datasets that we will encounter to be standard flat tabular
files with rows and columns—observations and variables—stored in row-major order, mean-
ing that all the variables for one observation are stored first, followed by all the variables
for the second observation, etc. Since we’re only concerned with a single data type, double-
precision floating point, what we’re essentially looking for is a data structure to store a
matrix of doubles. However, C has no built-in concept of a matrix. So the fun and exciting
task falls upon us to invent one. What C does have a built-in concept of is an array. Arrays
can have multiple dimensions. So, in the simplest implementation, we could define our
dataset as a two-dimensional array of doubles:

int NROWS = 100;

int NCOLS = 5;

double dataset[NROWS][NCOLS];

Unfortunately this is not very flexible. With a two-dimensional array, only one of the
indices can be supplied dynamically at run-time. The first index, however, must be known
at compile time4. Thus, in order to use this data structure to store our dataset, we’d have to
know, or if not, guess, either the number of observations or number of variables. This is not
very practical. We really need a data structure that can adapt to hold an arbitrary number
of observations and an arbitrary number of variables per observation—memory permitting,
of course.

Fortunately, C has another well-known, flexible, powerful, and dangerous method of
mimicking a multi-dimensional array or matrix: pointers. If we declare our dataset as a
pointer to a pointer to double:

double **dataset;

Now, we can allow for arbitrary dimensions specified at run time by using malloc and
realloc to manage the memory pointed to by our dataset variable. In order to make use
of this data structure, you will need at least two calls to the malloc function. First, you
need to allocate space for some number of pointers to double:

dataset = (double **) malloc(NROWS * sizeof(double *);

Now what we’ve done is requested enough memory from the operating system to hold
NROWS instances of pointers to double. In a row-major design, these would be pointers to
the first variable in each observation. Next we need to allocate space for each observation
to handle the number of columns we need:

for (i = 0; i < NROWS; i++) {

dataset[i] = (double *) malloc(NCOLS * sizeof(double));

}

4This was true until the C99 standard which provides for variable-length arrays. However, these are still
less than ideal for use with a general purpose array or matrix representing a dataset for two reasons: first,
functions that expect arrays cannot always handle arrays defined as pointers, and vice versa. (See C FAQ
question 6.18 [7]). Second, arrays are initialized on the stack which means they disappear once out of scope.
Not only is it dangerous to instantiate large objects on the stack, it also makes it impossible to pass them
around from one module to another.

Scott A. Czepiel

http://c-faq.com/aryptr/pass2dary.html
http://c-faq.com/aryptr/pass2dary.html

mlelr: A Reference Implementation of Logistic Regression in C 20

An important design consideration is whether to use a column-major or a row-major
organization of our dataset. In other words, should our first index represent the row or
the column? Row-major ordering is, in my opinion, more natural. As noted above, most
datasets we expect to encounter will be stored in this way; this is the standard way that
spreadsheets, csv files, and general purpose data files are oriented. Thus, a row-major
design for our dataset will make data import easier. When reading data from an external
file, we will read one line at a time, where each line is a new observation. In addition,
matrix notation is typically written in row-major order, with the row subscript appearing
first, followed by the column subscript. Since we want to easily compare our code to
the formulas on which they are based, a row-major ordering to our dataset structure will
maintain consistency and be easier to read.

Column-major designs can be more efficient in certain situations. Analytic database
systems often use column-major ordering to make data aggregation more efficient. HP’s
Vertica, for example, uses column-major ordering combined with run-length encoding to
compress observations. Consider a variable with 100 million rows, but only two unique
values. Instead of storing 800 million bytes of data, you could sort them and store 4 numbers:
the first value and then a count of the number of rows containing that value, followed by
the second value and the count of the remaining number of rows with that value. Such
optimizations, however, are unlikely to be made use of in our reference implementation,
but it helps to be aware of the possible implications of choosing a row-major versus a
column-major ordering.

Another concern with the row-major ordering is the number of malloc calls required
to reserve space for the dataset as it grows in size. The datasets we expect to use in
logistic regression will have several hundred or even several thousand observations but a
much smaller number of variables, perhaps 10 or 20. Thus, in a simple row major ordering,
we could end up calling malloc once per observation, which could amount to thousands of
system calls. Even with relatively small datasets we may notice the performance penalty
of this approach. Fortunately, there are two quick optimizations we can take advantage of
that will mitigate this problem.

The first optimization is to grow the array by powers of 2, maintaining separate counts
of the number of observations and the maximum number of observations allowed given the
current amount of allocated memory. This technique is very well documented by Kernighan
and Pike [5]. There will be some amount of wasted space—in our example of 1,000 rows we
will have allocated space for 1,024—but we judge this to be an acceptable compromise5.

The astute reader will have recognized that there is another problem with our row-major
design. Even though we grow the array by powers of 2, we will still need one malloc call
per observation. Each time the number of observations reaches the maximum number of
observations for which we have reserved memory space, we will need to realloc the dataset
to hold twice as many observations. Recall that dataset is a pointer to a pointer to double.
Each “row”, dataset[i], is an array of doubles with size equal to the number of variables
in the dataset. So now that we’ve allocated space to hold additional observations, for each

5You could conceivably improve on this by using a realloc after all your observations are read, to shrink
the allocated space back to only what you need. However, if you are really this memory-constrained, then
your dataset is probably too big for the system and you will likely run out of memory at some point down
the road.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 21

observation we subsequently add to the dataset, we would still need to malloc enough space
to hold all the variables in the observation.

Note that if we had a column-major ordering, the number of malloc calls would not be
as large. If the first index in the array represents a variable, then every time we change size
by a power of 2, we only need one realloc per variable. Thus, for a dataset with 1,000
observations and 10 variables, using a column-major ordering we would have the following:

• 11 initial malloc calls: one for dataset, and one for each column, dataset[i]

• 100 realloc calls: log2 1000 = 10 cycles of growing the arrays * 10 variables each

Compare this to our row-major design:

• 2 initial malloc calls: one for dataset, and one for the first observation, dataset[i]

• 10 realloc calls: log2 1000 = 10 cycles of growing the array

• 999 additional malloc calls: for each observation before we read it into the array

The difference is due to the fact that in the column-major design, we can make fewer
requests for larger amounts of memory, since we are storing one entire variable as the first
dimension in the array. In the row-major design, the first dimension in the array is an
observation, so the most we can ask for at any one time is the number of variables that the
observation will hold.

Note that even if you know before hand how many observations are in your dataset6,
you still need to call malloc once per observation. There’s no way around it. Or is there?

Of course there is, otherwise I never would have bothered to write the preceding para-
graphs and this section would have been a whole lot shorter! The solution is to create a
singly-dimensioned array of contiguous space for the entire dataset, and then use another
matrix of pointers to facilitate the convenient indexing. At this point, let’s introduce our
dataset structure, defined in dataset.h:

typedef struct {

char *handle; /* a short label for this dataset */

int n; /* number of observations */

int size; /* amount of space allocated for values */

int nvars; /* number of variables */

char **varnames; /* array of variable names */

double *values; /* array of contiguous space to store all data */

double **obs; /* matrix of pointers to access each obs[i][j] */

int weight; /* index of the weight variable, or -1 if none */

} dataset;

Note that we have wrapped some additional metadata along with the actual data values
so that everything we need to describe a dataset can be contained in one place. (This is as
close as we ever need to get to C++ objects). All of the actual data will be stored in the

6You could do this by reading the file twice, but this is such a wastefully sub-optimal solution that we
really should not even bother considering it.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 22

values pointer, which will be incremented as the number of observations grows and will
grow in multiples of the number of variables needed for each observation. We could stop here
and use values directly, but then we would have to do annoying pointer offset arithmetic
every time we wanted to access a single observation, e.g. observation 10 of variable 5, in a
dataset with 20 variables would be:

values[4 + (9 * 20)]

Instead, we build a matrix of pointers, obs, that all point to values in such a way that
we can simplify data access and then our ability to access the values in the dataset becomes
far more natural:

obs[9][4]

This introduces some additional memory overhead, since obs will consume one pointer
for each “cell” in the dataset. Since a pointer is typically 4 bytes vs the 8 already allocated
for the values array, we’re introducing a 50% increase in the amount of memory we need
to store the dataset. Ah, such is the price we pay for convenience!

Additional metadata includes a short handle which the user can use to refer to the
dataset. This is useful in either a script or interactive environment. Next, a few ints to
store the number of observations (n), the total number of observations for which space has
been allocated (size), and the number of variables (nvars). Finally, we include an array of
variable names so the user can conveniently refer to names as opposed to column indices.

Now that we have introduced a decent abstraction for a dataset to organize the data and
its corresponding metadata in a convenient C struct, the following section will describe
the program flow of mlelr. This section will describe how to interact with the program,
what commands are available, how to read data from external files into a dataset, and how
to setup and run a logistic regression.

5 Program Flow

This section will describe how mlelr works by detailing the program flow of the code and
describing the commands available to the user.

5.1 Installation

mlelr can be downloaded in source form as a compressed archive. Run the following
command in a compatible shell to unpack the archive:

$ tar xzf mlelr-1.0.tgz

Enter the ‘src’ directory and run the command make. In order for the program to link
properly, you will need to make sure the gsl library is installed. See Section 8.5 on how to
setup a development environment in which to build and run mlelr.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 23

5.2 Program Use

mlelr is compiled and linked to a standard console application consistent with the exe-
cutable formats available on the target platform. Running the program with no arguments
will enter an interactive mode and the program will wait for user input:

$./mlelr

mlelr - a reference implementation of logistic regression in C

version: 1.0

mlelr->

There are several available command line arguments. The “-h” or “-help” argument will
bring up a brief help message. This will also be printed if an unrecognized command line
argument is passed to the program.

$./mlelr -h

mlelr - a reference implementation of logistic regression in C

version: 1.0

Available command line arguments:

-f or -file: read and execute commands from the named file

-o or -out: redirect output to a file

-l or -log: redirect log messages to a file

-v or -verbose: log extra detail to the log file

-s or -silent: suppress all logging information

-h or -help: print this message

mlelr->

There are three options that can be used to redirect input and output. The code behind
the processing of startup options is found in the main function in the file main.c. To skip
interactive mode and redirect input to read from a script file, use the “-f” or “-file” option.
This option, when immediately followed by a valid pathname, will attempt to open and
read the file and then process commands from the input file instead of from the console
directly. When all commands from the input file have been processed, the program will
exit.

We use a rather basic convention for output and logging of errors and warnings. Ordi-
narily, the results output from the normal operation of a command will be printed to stdout

while error messages, warnings, or informational diagnostics will be printed to stderr. In a
standard console, however, these pipes will likely resolve to the same place, i.e. the screen.
To assist with scripting, we provide two options to redirect either or both of these targets
to a file. The “-o” or “-out” option will redirect output to the file named immediately after
the option. For example:

$./mlelr -o output.txt

Similarly, the “-l” or “-log” option will redirect logging to a file. Note that by convention,
we treat the output file as a single-session only file while the logging file can persist across
sessions. This is achieved by opening the output file in “w” (write) mode, which will
overwrite it if the file already exists, but we open the logging file in “a” (append) mode,

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 24

which will append to the file if it exists. This is beneficial when you have a script that
will call mlelr in a loop, estimating a new model each time, and parsing each output file
independently, while maintaining a single log file that will collect diagnostics across all calls
to the program.

There are two additional switches that control how little or how much information is
written to the log. The “-v” or “-verbose” option will provide more detail, this is mostly
of benefit while debugging. The “-s” or “-silent” option will attempt to silence all logging
information. Note, however, that output messages will still be written to the output file,
and some fatal error messages, such as running out of memory, will still be printed to the
log even if the silent option is on.

Once command line options have been successfully processed, the dataspace is initialized—
memory is allocated for the structure to hold pointers to datasets—initial options are set,
and a welcome message is printed. At this point, control is passed to the input handler
function. This function is continually called until a non-zero value is returned, which signals
the program to clean-up and exit.

while (!retval) {

retval = input_handler();

}

The purpose of the input handler, defined in interface.c, is to accept commands either
from a specified input file or from direct input by the user to stdin. The input handler will
call Kernighan and Pike’s csv library, splitting on spaces to delimit each line into words.
This is a poor-man’s parser—although it is not purposely built for parsing, with two small
adaptations it became completely adequate for our purposes. It forces on us a rigid and
terse command syntax, but lexing and parsing are extremely non-trivial areas of program
design that should not be entered lightly and which we desperately seek to avoid in a
demonstration program of limited means. Besides, we’re not in the business of designing
flowery scripting languages here. All we need is the minimum syntax necessary to tell the
program what we want to do. This is another compromise we are willing to make in order
to reuse functionality that is already present in importing data files, and adapting it for
parsing command strings from user input.

One limitation is that each command must consist of only one line. Fortunately, our com-
mands typically require only a few arguments so this is not terribly inconvenient. However,
for the specification of a complex model, it may become cumbersome to keep everything on
one line. It is also important to keep arguments delimited by spaces. When an argument
itself includes a space character, wrapping the entire argument in double quotes will allow
the csv parser to treat it as a single field.

The input handler begins by printing a prompt if in console mode, i.e. when reading
from stdin. Next, the csv library is called, splitting on spaces and compressing multiple
consecutive spaces into a single delimiter. If nothing is returned by the csv library, the
program will exit. Otherwise, we will scan the array cmds for an entry that matches the
first word that was read by the parser. If a match is found, the cmds array contains a
function pointer which is then executed, and control is passed to that function where the
remainder of the command string is checked.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 25

To make this happen, we first define a special typedef for a pointer to a function with no
arguments and returning int. This will be the basic entry point for all functions accessible
to the user. Then we create a COMMAND typedef with the name of the command and a pointer
to the function to call if that command is found by the parser:

typedef int int_fp_v (void);

typedef struct {

char *name; /* the name of the command */

int_fp_v *f; /* pointer to the function to call for this command */

char *desc; /* brief description of command */

} COMMAND;

COMMAND cmds[] = {

{"import", cmd_import, "Import a delimited text file."},

{"print", cmd_print, "Print a dataset."},

{"table", cmd_table, "Univariate frequency tabulation."},

{"logreg", cmd_logreg, "Estimate a logistic regression model."},

{"weight", cmd_weight, "Assign a weight variable to the dataset."},

{"option", cmd_option, "Set a global option."},

{"help", cmd_help, "Print some help on command syntax."},

{"q", cmd_quit, "Exit the program."},

{"quit", cmd_quit, "Exit the program."},

{"#", cmd_comment, "This line is a comment."},

{(char *) NULL, (int_fp_v *) NULL, (char *) NULL}

};

To differentiate them as special functions, we give all the functions in the cmds array
a prefix of “cmd ”. They must all operate the same way: accepting no arguments and
returning 0 unless we want the program to exit. The cmd quit function is the only one that
ordinarily returns a non-zero value, since exiting is its intended purpose. The idea behind
these “cmd ” functions is to validate the syntax of the commands before passing control to
the actual procedure to perform the required work.

5.3 Command Syntax

As one can deduce from the cmds array above, there are only a small number of commands to
which our program will respond. The input handler will parse the first word of a command
string and perform a simple linear search through the cmds[] array. Some may chafe at
the inefficiency of a linear search, but for a use case such as this, where there is a very
small number of available commands, binary search or a hash table approach would be
unnecessary overkill. As a general rule of thumb, linear search will be the most efficient
solution for arrays with less than roughly 50 items7

As noted above, the general syntax rules to which all commands must conform are to
follow the command name with its arguments delimited by spaces, with everything on a

7If the array is sorted based on expected match frequency—putting the most used commands at the
top—linear search can be efficient up to several hundred array items before its performance can be topped
by other methods.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 26

single line. Any newline will be treated as the end of the command and parsing of arguments
will cease. When a command name is matched, control is passed to the special cmd function
corresponding to the command, where additional syntax checking will occur.

5.4 Import a new dataset

The import command is used to read a delimited text file and generate a dataset which can
then be used in subsequent commands by referring to its handle. This is generally the first
command you will want to use since there is very little to do in mlelr without having a
dataset available in the dataspace. The text file containing the data that we want to import
needs to reside on the local filesystem. A delimiter can be any single character, although it
is conventional to use either a comma, tab, pipe, or space. Since a tab character is not easily
represented in its actual form, we can refer to it using the escape sequence \t. Handling
escape sequences is not a pretty task and for the sake of simplicity, with a dash of laziness,
we have hard-coded the parsing of \t to be a tab character, but have not done the same
with other control sequences. Thus, if you have data for which someone decided to use an
exotic non-standard delimiter character such as the BEL character, 0x07, represented as \a,
I’m afraid you will have to convert this to one of the afore-mentioned standard delimiter
characters in order to work with mlelr. Let this be a lesson: don’t use exotic delimiter
characters. Use a comma, tab, pipe, or space.

The import command expects three required arguments that will be parsed by the
cmd import function: a “handle” which is merely a short name for the dataset by which
subsequent commands may refer to it, the filename where the raw data file is located,
and the delimiter character that should be used to separate fields in each line. Here is an
example of an import command:

import ingots ../data/ingots.dat "\t"

If a successfully parsed import command is read, control is passed to the import dataset

function declared in dataset.h and defined in dataset.c. The above command will import
the ingots dataset from the ‘data’ directory, specifying that the file is tab-delimited. Our
import function assumes that the first line of the data file contains variable names. If you
produce your own dataset for use in mlelr, be sure to include variable names as the first
line in the file, delimited by the same delimiter used for the actual data.

As noted earlier, we use Kernighan and Pike’s csv library to read each line of the data
file and transform it for use in our dataset structure. The interface to the library is declared
in csv.h and the source is in csv.c. We made two changes to the original implementation
in order to add two small bits of extra functionality. The first change we made was to allow
for delimiters other than the comma. The original implementation hard-codes the comma
as the delimiter character, and for good reason—the name of the library itself calls out
the assumption that the values are comma-separated. The original code contains this line
which defines the field separator to be a comma:

static char fieldsep[] = ","; /* field separator chars */

We abstract this by giving the csvgetline function a new argument char delim which
is then used throughout the library in place of the fieldsep char. The other change we

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 27

made is the new int compress argument to csvgetline. This is called with a 1 or 0 where
a value of 1 indicates that multiple delimiter characters in succession are to be treated as a
single delimiter. This is useful when in command strings we typically want to delimit words
by any combination of spaces. If a user command includes two spaces after a command
word, we don’t want the parser to think of this as an extra blank field. Similarly, in the
preparation of datasets, tabs and spaces are often mixed, or extra spaces are used as padding
to line up the columns for convenient reading. Note, however, that for this version of mlelr,
we have hard-coded the import dataset function to call csvgetline with compress = 0.
However, if you wanted to allow for this functionality, it would be possible to allow a user
the option of specifying whether to treat all delimiters individually or to collapse them. We
may consider this for a future version.

After reading the variable names from the first line of the specified data file, we now
know how many variables for which to allocate space in our dataset.

ds = add_dataset(handle, nvars, varnames, 1);

The add dataset function, also defined in dataset.c, takes 4 arguments and returns
a pointer to a dataset struct. See Section 4 for a description of our dataset structure.
The first argument is the handle providing a convenient name for the dataset. Next is the
number of variables in each observation of the dataset. It is necessary to know the number of
variables in order to allocate space for the values and obs arrays. The final argument, int
is public, determines whether to add the dataset to the user’s dataspace. Throughout
mlelr we take advantage of the dataset structure for a variety of purposes. It is used in
frequency tabulation, for example, to store the table of values and counts. The datasets
that are used by mlelr behind the scenes are not added to the dataspace, so the user does
not have direct access to them—and they don’t unnecessarily pollute the dataspace with a
lot of temporary datasets that the program is creating but for which the user doesn’t really
have any use. All datasets called via the import dataset command will be called with
is public = 1.

Since our dataspace structure is dynamically allocated, we first check whether we need
to grow the array of datasets, as we would if we were adding a new observation to a dataset.
We grow the array in powers of 2 using the same method identified by Kernighan and Pike
that we described earlier.

After the add dataset function returns, we then allocate space for an array of doubles
to store each observation as we read each line from the file. Note that we cannot handle
jagged arrays in the data file: if we encounter a line with a different field count than what
we expect, the import function will fail and print an error message. We parse each field
using the string to double function which provides a wrapper around the strtod library
function. There are some edge cases which we are probably being overzealous in attempting
to account for, but in general it is a good idea to check the return values for library functions,
especially those that deal with user input.

For each line, we read each field into the obs variable. After the entire observation
has been parsed, we call the add observation function. This function sets up all the ugly
pointer arithmetic that make the obs and values arrays work properly as described above
in Section 4.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 28

Once all lines are read from the input file, the number of observations imported is logged,
the input file pointer is closed, and the import dataset function returns 0, indicating suc-
cess. This returns control back to the cmd import function which cleans up and then returns
control back to the input handler function which will then return 0 back to the while loop
in the main function. Since we returned a 0, the loop will continue, the input handler

function will be called again, and we will then await input from the user or begin to process
the next command from the INPUTFILE.

Reviewing the call stack we have the following flow of function calls:

main() -> input_handler() -> cmd_import() -> import_dataset() -> add_dataset()

add_observation()

5.5 Print a dataset

The print command is used, predictably, to print a dataset to the output file (or stdout).
It takes two required arguments: the first is the handle for the dataset you wish to print,
and the second is an integer specifying the number of lines to print. If you want to print
the entire dataset, enter 0 for the number of lines. The following example command will
print the first 10 lines of the dataset with handle ‘gator’:

print gator 10

The function that actually prints the dataset is called print dataset and is defined in
dataset.c. This function takes 3 arguments: a pointer to a dataset structure, the number
of lines to print, and a third integer argument indicating whether a header should be printed
with some summary information to the output. In order to translate the handle provided
in the call to cmd print to a pointer to the dataset with that handle, the find dataset

function is used. This function walks through the dataspace looking for the first dataset that
matches the supplied handle. It is crucial that handles remain unique, although mlelr does
not enforce any rules around handle uniqueness. If you use add dataset with a handle that
already exists, your new dataset will never be found anytime the find dataset function is
used to identify the dataset by its handle.

The header option prints metadata about the dataset including the handle, number of
variables, and number of observations. When printing datasets initiated by the cmd print

function—thus originating from a print command by a user—the header is always included,
since it conveniently identifies and summarizes the dataset that is being printed to the
output. However, there are some situations where we call print dataset when we do not
want this header to be included: for example, when printing datasets that are frequency
tabulations.

5.6 Univariate frequency tabulation

The table command will tabulate a given variable and print the results to the output
window. Although not strictly necessary in a program designed to demonstrate logistic
regression, the functionality behind the table command is internally required for some of
the preliminary steps in building the design matrix. Thus, it was actually not a big hurdle
to include this as a user-facing feature. The table command has only two arguments: a

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 29

dataset handle and a variable name to tabulate. This example command will generate the
frequency counts for the agegrp variable in the census dataset:

table census agegrp

The cmd table function will use the find dataset function to get a pointer to the
dataset identified by the supplied handle. Next, find varname is called which is a similar
function to find the index of a variable based on its name. This function simply walks the
array of varnames in the dataset until it finds a match, returning the index. If the variable
name was found in the dataset, the function frequency table declared in tabulate.h and
defined in tabulate.c is called.

This is a nice meaty computer science problem because it requires use of the two staples
of Intro to Algorithms texts: searching and sorting. Thus, we could approach the solution
with a variety of strategies. First, we need a description of the problem: having identified
a variable in a dataset, we want to produce a frequency table of its discrete values. The
output should be a dataset containing two variables: Value and Count, where Count is the
sum of the weights of each occurrence of Value in the dataset.

Among the variety of possible solutions, the basic paradigm difference among them is
whether to maintain a sorted data structure while iterating through the problem space, or
to do all the searching up front and leave the sorting until the end. Having discovered a
clever method of using the library function qsort on our dataset structure (see below), it
was far easier to opt for the latter approach.

We begin by calling add dataset with the is public argument equal to 0. The resulting
dataset will not be added to the dataspace. We provide a custom handle which is really
just a title for the frequency table. There are two variables named Value and Freq. Next
we loop through each observation in the dataset and attempt to find the target value in the
frequency dataset. If it has not been encountered before, we will call add observation. If
it has been encountered, when we find it we will increment the Freq variable by 1.0 or, the
value of the current observation’s weight if a weight variable has been set for this dataset.
When this is done, we sort the frequency dataset and print it to the output.

The sort dataset function involves a clever bit of trickery that enables the use of qsort
on our dataset structure. The library function qsort can be used to sort a variable of any
type provided that a special comparison function is provided to it which basically tells qsort
how to determine which of two given values is less than the other. This comparison function
must follow a specific function signature: it needs to take two pointers as arguments and
return a negative number if argument 1 is less than argument 2, 0 if they are equal, and a
positive number if argument 1 is greater than argument 2. See the documentation for the
comparison function in glibc [8] for more details8.

After struggling with various attempts to code a sort function for our dataset structure,
I happened upon a discussion of a clever trick which would enable using qsort9. Basically,
we overload the arguments to our sort function. Our sort function will set a static variable
if it is called with the first argument null. This variable will determine how many columns

8link: http://www.gnu.org/software/libc/manual/html_node/Comparison-Functions.html#

Comparison-Functions
9link: http://cboard.cprogramming.com/c-programming/114867-qsort-question.html

Scott A. Czepiel

http://www.gnu.org/software/libc/manual/html_node/Comparison-Functions.html#Comparison-Functions
http://www.gnu.org/software/libc/manual/html_node/Comparison-Functions.html#Comparison-Functions
http://cboard.cprogramming.com/c-programming/114867-qsort-question.html

mlelr: A Reference Implementation of Logistic Regression in C 30

of the dataset are to be sorted in subsequent calls. Using this trick, we can rely on the
well-tested functionality of qsort in the standard library instead of having to code our own
sort routine:

void sort_dataset(dataset *ds, int n_cols) {

compare_obs(NULL, &n_cols);

qsort(ds->values, ds->n, ds->nvars * sizeof(double), compare_obs);

return;

}

int compare_obs (const void *v1, const void *v2) {

static int sort_columns = 1;

const double *a = (const double *) v1;

const double *b = (const double *) v2;

int i;

/* trickery */

if (v1 == NULL) {

sort_columns = *(int *) v2;

return 0;

}

for (i = 0; i < sort_columns && a[i] == b[i]; i++);

return (a[i] > b[i]) - (a[i] < b[i]);

}

5.7 Assign a weight variable to a dataset

The weight command is used to identify a variable used as a weight, i.e. the count of the
number of observations, instead of 1, that each observation represents. This occurs fre-
quently enough that it makes good sense to include this as a feature to support. Many
datasets are distributed essentially in contingency table form, with a count variable which
is basically an explicit weight. In other situations, datasets that are samples with com-
plex sampling methods may require a weight variable to be properly representative of the
underlying population. The syntax is simple as there are only two required arguments:

weight ingots n

The first argument is a dataset handle and the second is the variable name of the variable
which should be treated as the weight variable. In all tabulations, including those that are
used in the logistic regression procedure, the weight variable will then be treated as the
logical count of observations. The function set weight variable defined in dataset.c

changes the weight attribute of the associated dataset by setting the value equal to the
index of the variable. If weight equals -1, then the dataset will be treated as unweighted.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 31

5.8 Set a global option

Global options are generally not a great design pattern, but can be used to simplify other
commands by setting some variable which then can be accessed globally throughout the
program. Our option functionality is extremely basic. In main, we call an init options

function defined in interface.c which allocates space for an options struct, declared in
interface.h. This allows us to set arbitrary key-value pairs which can be accessed by any
module that includes interface.h.

Currently, we only use this for one feature: the ability to change the parameterization
from the default of full-rank center-point to dummy coding. To do so, issue this command:

option params dummy

To go back to the default:

option params centerpoint

The get option(k) and set option(k, v) functions defined in interface.c enable
access to any existing options set with option commands. The get option function takes
a key as its argument which will be searched in the array of keys in the options struct. If
a match is found, the corresponding value will be returned. For set option, two strings
are passed as arguments, key and value. The key is looked up in the options struct and if
found, the corresponding value will be updated. If not found, a new key-value pair will be
added.

5.9 Estimate a logistic regression model

At long last we finally come to a description of the command for logistic regression, the
primary purpose of our program! The logreg command will begin the logistic regression
procedure. Since we need to pack a fair amount of information into the command string,
the syntax is a bit stilted, but still functional. Below are example calls illustrating different
types of model specifications:

logreg ucla admit = gre gpa rank

logreg ucla admit = direct.gpa direct.gre rank gre*gpa gre*rank

The first argument to the logreg command is the dataset handle and the second is
the dependent variable to be modelled. Following the dependent variable is an equals sign
(which owing to the limitations of our parsing method must be separated by spaces on both
sides) after which we have a specification for the independent variables. There are three
types of independent variables: main effects, direct effects, and interaction effects. Main
effects are names of variables that must already exist in the dataset. They will be treated as
categorical effects in the design matrix—the total number of parameters for each response
function equals one less than the number of discrete values of the variable. For continuous
variables, or variables with a large number of discrete levels, or variables that we simply
want to treat as continuous, prefacing the variable name with “direct.” will enter the
values directly into the design matrix, thus occupying only one column. Interaction effects

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 32

are specified with an asterisk between two (or more) variable names. There is no limit to the
number of variables that can be included in an interaction effect. The type of interaction
here is sometimes referred to as a crossed effect. In the design matrix, the values of each
variable are multiplied together to form all possible permutations of the resulting design
columns. Other interaction types such as nested interactions are not supported.

The cmd logreg function does a fair amount of validation of the model syntax before
passing control to the mlelr function which will actually perform the logistic regression
procedure. In addition to checking the syntax, here is where a model structure will be
initialized which translates the human friendly model specification into something more
convenient on which the logistic regression procedure can operate. The header file model.h

declares a model struct containing all the metadata about a model. In Section 3.6 above,
we show the complete source of our model struct.

The parsing that takes place in the cmd logreg function makes use of the add model variable

function defined in model.c. This function is long and complicated, owing to the fact that
we have allowed a lot of functionality in the model specification that then needs to be care-
fully translated into the model structure. The parsing logic begins by finding the dataset
with the supplied handle. Next we initialize a model structure and add the dependent
variable. Be aware that we only do rudimentary validation of the model specification. If a
confusingly specified model is entered—for instance adding interactions involving variables
that have not been entered as main effects or adding duplicate interactions—the results
may be nonsensical.

Once parsing of the model specification is complete, we now have all the information
needed to run the model in the model structure itself. Thus, instead of a long series of
arguments, we now only need to pass two arguments: a pointer to the dataset, and a
pointer to our custom model structure.

mlelr(ds, mod);

This function is declared in mlelr.h and defined in mlelr.c. The mlelr function is
a long one, occupying over 500 lines including comments. In a general purpose statistical
package it would make sense to break this functionality out into multiple different modules.
Constructing the design matrix, for example, could be handled in its own code module
to decouple it from the execution of any particular model. Printing the results is also
something that should exist as a helper module, rather than being hard coded into this
one big function. However, as we have made clear by now, this is not a general purpose
statistical package, and we have been more than happy to make certain compromises in
order for the program to stand alone as an easily understood and purpose built utility.
Thus, even though a further layer of abstraction here may make the various components
more extensible, we find it perfectly acceptable to leave this as a single monster function
given that it is the central feature of the program.

Another reason the code was written in this monolithic manner is to parallel the outline
provided in the companion article [1]. The mlelr function should appear very similar to
the implementation sketch provided in the prior work. However, do be advised that there
may be some minor notational differences between the code and the equations found in the
original article.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 33

In addition to the already complex model structure, mlelr declares a bewildering mul-
titude of temporary variables on the stack. Some of them are commented, others’ purpose
will be obvious by their names, others you may need to hunt in the code to find out what
they actually do, and some of them may actually not even be used at all and are remnants
of functionality that was not included in the current version. At one point I considered
factoring out a large chunk of these variables and putting them in a structure. Similar to
the way the model structure encapsulates all the data required to run the model, we could
have another structure that would encapsulate all the data generated by the running of the
model. However, given that the requirements for this program do not include doing any-
thing with the results of the model except printing them to the output window, I ultimately
opted to leave these as temporary variables within the mlelr function. The function itself
is organized around the following steps:

• Step 1. Build the crosstab as a precursor to the design matrix.

• Step 2. Count the number of populations and set a population index for each row in
the xtab.

• Step 3. Count number of columns needed in X and Y.

• Step 4. Allocate space for model vectors and matrices.

• Step 5. Build X, Y, and n.

• Step 6. Build the interactions portion of X.

• Step 7. The Newton-Raphson loop.

• Denouement: Print the results.

Step 1. Build the crosstab as a precursor to the design matrix.

When the mlelr function is entered, we have a dataset and a model structure which
tells us the dependent variable and the various types of independent variables—main effects,
direct effects, and interactions. The first six steps of this function are devoted to setting
up the design matrix, the most important structure in carrying out the actual modeling
procedure. Although we can code the design matrix with as many rows as there are actual
rows in the dataset, it is easier computationally to collapse common rows into a set of
unique “populations”, where each population represents a unique combination of the values
of the independent variables. Each population will have a count equal to the sum of the
weights of each observation that belongs to the population. For example, if we have a single
independent variable with three unique values, the design matrix will only need to include
three rows, regardless of the total sample size, because each observation will belong to one
of those three populations.

See Section 2.1.1 of [1] for a description of the model specification for binary logistic
regression, and Section 2.2.1 for a description of the model generalized to the multinomial
case. In our mlelr function, we will build X as our design matrix having N rows and K

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 34

columns, where N is the number of populations and K is the number of columns needed in
the design matrix to parameterize all the independent variables and their interactions.

Before we can begin building the design matrix, we will need several intermediate
datasets which provide tabulations of all the variables to be used in the model. We can use
our tabulate framework to generate these datasets and we have defined a special function
tabulate which accesses the model structure directly and generates the tabulations we re-
quire. We accomplish this with the following simple function call from Step 1 in the mlelr

function:

tabulate(ds, mod);

Note from the definition of the model structure in model.h that there are two special
dataset pointers defined for each model which up to this point have not been allocated or
set:

dataset *xtab; /* cross-tabulation of all model variables */

dataset **freqs; /* array of frequency tables for all model variables */

It is the tabulate function’s job to build these datasets. The xtab dataset is a tabula-
tion of all the independent variables plus the dependent variable. Thus, it will have one
column for each independent variable, one for the dependent variable, and one for the count
of observations at each level. Next, freqs is an array of datasets, one for each indepen-
dent variable and one for the dependent variable. These datasets will have two columns:
Value and Freq. We could tabulate each of these variables individually by reusing the
frequency table function already defined, but this would involve traversing the input
dataset multiple times. We want to do this in one pass over the dataset, so we loop through
each observation and then loop through each variable—all independent variables plus the
dependent variable—building the individual variable tabulations in the freq dataset ar-
ray. As we loop over each variable, we also store the current observation’s value in an
array called obs. When we have completed the loop over each variable, and our obs ar-
ray now represents the full set of variables for the current row in the dataset, we use the
find observation function defined in dataset.c to search for this observation in the xtab

dataset. If the observation is found in xtab, then we increment the count (by the value of
weight), otherwise we add a new observation to xtab.

Note that we do not provide a way to handle negative or zero weights, so we will ignore
the entire observation unless there is a positive weight. When tabulate is finished, the xtab
and freqs datasets are now ready for mlelr to begin counting the number of populations
on our way to building the design matrix.

To simplify the code and reduce the level of pointer indirection, we set the following
temporary variables to refer to various aspects of the xtab dataset:

/* for convenient reference */

xtab = mod->xtab->obs;

xtabrows = mod->xtab->n;

xtabcols = mod->xtab->nvars;

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 35

Step 2. Count the number of populations and set a population index for
each row in the xtab.

The xtab dataset that was generated by the tabulate function does not directly provide
us with the design matrix, but provides us all the information we need to build it. Note
that the xtab dataset also contains the dependent variable, so the populations as we have
defined them to be unique combinations of the independent variable values will appear
multiple times in xtab, potentially once for each response function (level of the dependent
variable). We want to count and identify the unique populations in xtab, so to do this we
use an integer array called popindex:

popindex = (int *) emalloc(xtabrows * sizeof(int));

In Step 2, we loop through xtab and maintain a running count of the number of unique
populations represented therein. For each row in xtab, we store its population index in the
popindex array. When we are done with Step 2, we now have a mapping to the population
index of each row in xtab. We also know N, the number of populations, and M, the total
sample size—the sum of the observation weights in each row of xtab.

Step 3. Count number of columns needed in X and Y.

Now we can count the number of columns needed in X and Y. Y will have J columns,
which is the number of values of the dependent variable, also referred to as the number of
response functions.

/* number of cols in Y */

J = mod->freqs[mod->numiv]->n;

If there are 3 independent variables in the model, freqs will be an array of 4 datasets,
the last one, which can be indexed mod->numiv, will refer to the dependent variable. X will
have K columns. The algorithm for determining K can be summarized like this:

K <- 1

For each independent variable do:

If the variable is specified as a direct effect:

K <- K + 1

Else:

K <- K + (the number of values minus 1)

For each interaction do:

k <- 1

For each variable in the interaction do:

If the variable is not specified as a direct effect:

k <- k * (the number of values minus 1)

K <- K + k

We begin with one column for the intercept. Each independent variable will contribute
one column if it is specified as a direct effect, otherwise it will contribute one fewer than the

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 36

number of distinct values of the variable, which we can obtain as the number of observations
in the freq dataset for the variable. Interaction terms are multiplicative, so if we have two
terms in an interaction both having three distinct values, the interaction will contribute 4
columns (3− 1) ∗ (3− 1).

Step 4. Allocate space for model vectors and matrices.

In this step we allocate space for X, Y, and n, the primary structures needed for the
Newton-Raphson iterative procedure. X and Y are matrices and n is an array, all of which
have N rows. We also allocate space for several convenience arrays that will be useful in the
next step.

Step 5. Build X, Y, and n.

Here we loop through each row in xtab. For each new population encountered, we build
the design matrix columns for all main effects (interactions are saved for the next step).
The first column is always the intercept and it will always have a value of 1. Next, we
parameterize each main effect. If the effect is specified as a direct effect, we take the actual
value from xtab and use it in the design matrix. Remember this is used for continuous
variables which will only have one parameter estimate for each response function. For
categorical effects, we have two options for parameterization: the default is full-rank center-
point and as an option (see Section 5.8) we can use dummy coding instead. In both schemes,
we look at the number of levels of the variable and allocate one fewer columns for it in the
design matrix. Full-rank center-point parameterization codes a 1 for the target column and
0 for other columns except that the reference value is coded with -1. In dummy coding, all
columns besides the target are coded 0. To visualize this, consider a variable with 4 levels,
ranging from 1 to 4. Table 2 illustrates the two ways each value would be coded.

Table 2: Parameterization options

Value Full-rank center-point Dummy coding

1 1, 0, 0 1, 0, 0
2 0, 1, 0 0, 1, 0
3 0, 0, 1 0, 0, 1
4 -1, -1, -1 0, 0, 0

Choice of parameterization will not affect the resulting predicted probabilities, it is
mainly used to assist in interpreting the coefficients. In Step 5, we also store the counts for
each response function in Y as well as the overall count of observations per population in n.

Step 6. Build the interactions portion of X.

We are almost there, but not quite ready. We have coded the main effects portion of
the design matrix but still need to handle the interactions. This is highly tricky and we
need to make use of several temporary helper variables in order to build the interactions.
Earlier we defined several arrays to assist us here:

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 37

int *startcol; /* starting location of each iv in X */

int *colspan; /* number of columns occupied by each iv in X */

int *intcolidx; /* interaction column index */

These are used in coordination with the interaction specific variables from the model
structure:

int numints; /* number of interactions */

int maxints; /* space allocated for interactions matrix */

int *inttc; /* interaction term count */

int **ints; /* interactions matrix, rows=interactions, cols=index in numiv */

The startcol and colspan arrays were previously allocated in Step 4 to store an int

for each independent variable: startcol identifies the column location in X for the starting
location of the variable and colspan is a count of the number of columns in X that are
spanned by the variable. For example, if the first variable after the intercept has 4 levels,
it will have a startcol = 1 and colspan = 3. The third array intcolidx (interaction
column index) will be used to store a counter for the current column being used for each
interaction term. It is allocated to store enough space for an int for the interaction with
the largest interaction term count.

At the start of step 4, we loop through the independent variables and set startcol and
colspan for each. We also increment xc which, at the end of the for loop, will point to
the first column in the design matrix where interactions begin.

xc = 1;

for (i = 0; i < xtabcols - 2; i++) {

startcol[i] = xc;

if (mod->direct[i])

xc += 1;

else

xc += mod->freqs[i]->n - 1;

colspan[i] = xc - startcol[i];

}

Next we begin a loop for each interaction. We first initialize the intcolidx array to 1
for each interaction term in the current interaction.

/* do for each set of interactions */

for (i = 0; i < mod->numints; i++) {

/* setup a counter for each term */

for (j = 0; j < mod->inttc[i]; j++)

intcolidx[j] = 1;

Next we will begin a loop which accomplishes the following. For each row in the de-
sign matrix, get the values corresponding to the current interaction column index for each
variable (initially equal to startcol) involved in this interaction. Multiply those values
together and store the result in the current column, indexed by xc, of the design matrix
corresponding to this interaction term.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 38

q = 1;

/* construct each column of the interaction */

while (q) {

/* multiply and write the current column */

for (j = 0; j < N; j++) {

tgt = 1.0;

for (k = 0; k < mod->inttc[i]; k++)

tgt *= X[j][startcol[mod->ints[i][k]] + intcolidx[k] - 1];

X[j][xc] = tgt;

}

Next we will test for another available column for this interaction by incrementing the
intcolidx of the last term, until we have iterated through all columns for the last term
at which point we start over and increment the intcolidx of the next to last term. In
this way, we construct each interaction term by exhausting the available columns of each
interaction term from right to left.

/* move to next column in X */

xc += 1;

/* test for another column, starting with the last variable */

q = 0;

for (j = mod->inttc[i] - 1; j >= 0; j--) {

if (!q) {

intcolidx[j] += 1;

if (intcolidx[j] > colspan[mod->ints[i][j]])

intcolidx[j] = 1;

else

q = 1;

}

}

To visualize what is happening here, consider an interaction with three terms: the first
two terms have 3 levels each and the last term has 4 levels. Let’s say they are also the first
three variables in the list of independent variables. Then, we will have the following data:

inttc[i] = 3

startcol[0] = 1

startcol[1] = 3

startcol[2] = 5

colspan[0] = 2

colspan[1] = 2

colspan[2] = 3

The first time through the loop, each intcolidx is set to 1. So, we obtain tgt by
multiplying the values in the startcols of each variable; 1, 3, and 5. Next, in our test
for another column, we increment intcolidx[2] to 2. Since this is less than the value of
colspan[2], the loop continues and we obtain tgt for the next xc column by multiplying

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 39

the values in columns 1, 3, and 6. Next, we will get columns 1, 3, and 7 at which point the
last term has reached its colspan, so intcolidx[2] will be reset to 1, the for loop will
decrement j, and we will then increment intcolidx[1]. In this way we will get columns 1,
4, and 5 and continue the same way until we again get to the point where we exhaust the
colspan for the final term and then increment intcolidx[0]. When the loop is complete
for this interaction, we will have constructed 12 columns for this interaction term (2∗2∗3).

Step 7. The Newton-Raphson loop.

Finally we have built our design matrix, X, and are ready to prepare for Newton-Raphson
iteration to solve the equations necessary to estimate the logistic regression model. At
this point you are strongly urged to review the material in the companion article and be
comfortable with the derivations of the equations, especially Eq. 20, Eq. 23, and Eq. 40,
which express the matrix form of each step of the Newton-Raphson method.

To prepare for Newton-Raphson, we allocate space for several arrays that we will pass
to the function. These include arrays to store the coefficients (betas), the matrix xtwx of
second partial derivatives, and several additional arrays to store data used for significance
testing of the parameters and the overall model log likelihood. We initialize the starting
betas to 0 and call the newton raphson function until we reach convergence (where new
betas do not significantly differ from one iteration to the next) or until we reach a hard-
coded limit for the maximum number of iterations we will allow before assuming the model
has run away to a local maximum. We define MAX ITER to be 30. In my experience, most
models that do converge require fewer than 10 iterations to do so.

When the Newton-Raphson loop is complete, we conduct some significance tests and
then print the results to the output. For more details on the output, see Section 6 in which
we will walk through several examples provided with the source code. For more details on
how the Newton-Raphson procedure works, see Section 7.

5.10 Other commands recognized by the parser

The parser will recognize a few more commands. help will print some help text, including
a list of available commands, q or quit will tell the input handler to stop processing input
and thus exit the program. The # symbol indicates a comment line that the parser should
ignore. It will skip over the line and continue with the next line. Any other word or token
at the beginning of a line that does not match a known command will print a warning but
allow the user to continue.

6 Examples

In this section we will provide several examples of the functionality of mlelr. Scripts for
these examples are provided in the distribution of mlelr and can be found in the ‘tests’
directory. They reference datasets that are saved in the ‘data’ directory. To run one of the
example scripts, you can either enter each command at the mlelr interactive prompt, or
run them in batch mode:

$./mlelr -f ../tests/alligator.txt

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 40

This assumes your current working directory is the ‘src’ directory which is where the
mlelr executable file will be built by the make command.

6.1 Alligator dataset

The dataset of alligator food choice is one of the canonical examples used to test baseline
category logistic regression. It is available in many locations online, the version we are using
is from Agresti [9]. Note that if you find a version of this dataset elsewhere, there may be
differences in the ordering of the levels of the categorical variables. This will result in the
parameter estimates being mixed up, but will not affect the overall stability of the results.

This dataset has 80 observations including a count variable, as it is essentially a con-
tingency table. It is delimited by spaces. There are 5 variables: lake, sex, size, food, and
count. Let’s import this dataset and print the first few observations:

mlelr-> import gator ../data/alligator.dat " "

Importing dataset from file: ../data/alligator.dat

Number of variables found: 5

Variable names: lake sex size food count

New dataset created with handle: gator

Number of observations read: 80

Import complete.

Since the dataset needs to be weighted by the count variable, we will set the weight:

mlelr-> weight gator count

Setting weight variable to: ’count’ (4)

Let’s print the first ten lines of the dataset to see what it looks like:

mlelr-> print gator 10

Dataset: gator

Number of observations: 80

Number of variables: 5

lake sex size food count

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 2.00 0.00

1.00 1.00 1.00 3.00 0.00

1.00 1.00 1.00 4.00 5.00

1.00 1.00 1.00 5.00 7.00

1.00 1.00 2.00 1.00 0.00

1.00 1.00 2.00 2.00 0.00

1.00 1.00 2.00 3.00 1.00

1.00 1.00 2.00 4.00 2.00

1.00 1.00 2.00 5.00 4.00

The first three are independent variables. Lake is one of 4 lakes where these alligators
were found, sex is male or female, and size is a two category variable for small vs. large.
The dependent variable, food, indicates one of 5 food choices of the alligator. Next, let’s
run a tabulation of our dependent variable, food.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 41

mlelr-> table gator food

Dataset: Frequency table for: food

Number of observations: 5

Number of variables: 2

Value Freq

1.00 61.00

2.00 19.00

3.00 13.00

4.00 32.00

5.00 94.00

Now, we would like to predict the food choice of the alligators based on lake and size.
Here is our logistic regression model:

mlelr-> logreg gator food = lake size

This is a simple model and a small dataset so it will execute very quickly. Considering
all the time you may have spent digesting the material in this document, it is a rather
awesome feat to see how readily the computer provides the answer. There are certain tasks
where humans are better than computers, but maximum likelihood estimation of logistic
regression models is not one of them! At the top of the output is some basic information
about the model we just specified:

===

Maximum Likelihood Estimation of Logistic Regression Model

===

Model Summary

==============

Dependent variable: food

Number of independent variables: 2

Effect 1: lake

Effect 2: size

Number of interactions: 0

Number of populations: 8

Total frequency: 219.000000

Response Levels: 5

Number of columns in X: 5

Following this is a frequency table of the dependent variable and a cross-tabulation of
all the variables in the model (this is actually the xtab dataset from the model structure
that was generated by our tabulate function). We also print out the design matrix, in very
simplified form:

Design Matrix (all values rounded)

===================================

1 1 0 0 1

1 1 0 0 -1

1 0 1 0 1

1 0 1 0 -1

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 42

1 0 0 1 1

1 0 0 1 -1

1 -1 -1 -1 1

1 -1 -1 -1 -1

Here it is easy to see that the first column represents the intercept, and that we are
using full-rank center-point parameterization. Since lake has 4 levels, the second, third, and
fourth columns specify the effects for lake, and the fifth column specifies the effect for size.
Next we get a report of the model convergence and model fit criteria:

Model Results

==============

Number of Newton-Raphson iterations: 7

Convergence: YES

Model Fit Results

==================

Test 1: Fitted model vs. intercept-only model

Initial log likelihood: -129.940567

Final log likelihood: -47.513803

Chisq value: 164.8535, df: 14, Pr(ChiSq): 0.0000

Test 2: Fitted model vs. saturated model

Deviance: 17.079831

Chisq value: 17.0798, df: 12, Pr(ChiSq): 0.1466

Finally, we have the parameter estimates along with their standard error, the Wald
chi-squared value, and the significance results of the Wald chi-squared test.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 43

Maximum Likelihood Parameter Estimates

=======================================

Parameter DV Estimate Std Err Wald Chisq Pr > Chisq

Intercept 0 -0.71970490 0.2109 11.6420 0.0006

Intercept 1 -1.83093861 0.3398 29.0275 0.0000

Intercept 2 -2.12598750 0.3654 33.8562 0.0000

Intercept 3 -1.15144200 0.2343 24.1445 0.0000

lake 0 -1.75856999 0.4371 16.1897 0.0001

lake 1 -0.41644885 0.5589 0.5552 0.4562

lake 2 0.41269843 0.5115 0.6509 0.4198

lake 3 0.23914171 0.3458 0.4784 0.4892

lake 0 0.83700793 0.3260 6.5919 0.0102

lake 1 0.79964649 0.4710 2.8822 0.0896

lake 2 -0.93562692 0.8149 1.3183 0.2509

lake 3 -0.58140144 0.5061 1.3198 0.2506

lake 0 1.02177344 0.3385 9.1111 0.0025

lake 1 1.27602784 0.4677 7.4446 0.0064

lake 2 0.80534763 0.5424 2.2044 0.1376

lake 3 0.92931423 0.3836 5.8702 0.0154

size 0 0.72910231 0.1980 13.5634 0.0002

size 1 -0.17563142 0.2900 0.3667 0.5448

size 2 -0.31532987 0.3212 0.9635 0.3263

size 3 0.16577513 0.2241 0.5471 0.4595

You can verify that these estimates are identical to those found in Agresti’s Table 9.4
on p. 311 of [9].

6.2 Ingots dataset

The ingots dataset is originally from an article by Cox and Snell and is available from the
SAS website at [10]10. This dataset has 4 variables and is tab-delimited. We being by
importing the dataset:

mlelr-> import ingots ../data/ingots.dat "\t"

Importing dataset from file: ../data/ingots.dat

Number of variables found: 4

Variable names: heat soak r n

New dataset created with handle: ingots

Number of observations read: 38

Import complete.

This dataset also has a count variable, so we will weight by the variable n:

mlelr-> weight ingots n

Setting weight variable to: ’n’ (3)

The first two variables in the dataset, heat and soak, are continuous variables while the
dependent variable, r, is binary.

10link: http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#

statug_catmod_sect042.htm

Scott A. Czepiel

http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_catmod_sect042.htm
http://support.sas.com/documentation/cdl/en/statug/63962/HTML/default/viewer.htm#statug_catmod_sect042.htm

mlelr: A Reference Implementation of Logistic Regression in C 44

mlelr-> table ingots r

Dataset: Frequency table for: r

Number of observations: 2

Number of variables: 2

Value Freq

0.00 375.00

1.00 12.00

This dataset is used as an example test for the CATMOD procedure in SAS. Since we
want to treat heat and soak as direct effects, we will specify the model like this:

mlelr-> logreg ingots r = direct.heat direct.soak

First we can review the model summary at the top of the output:

===

Maximum Likelihood Estimation of Logistic Regression Model

===

Model Summary

==============

Dependent variable: r

Number of independent variables: 2

Effect 1: heat (DIRECT)

Effect 2: soak (DIRECT)

Number of interactions: 0

Number of populations: 19

Total frequency: 387.000000

Response Levels: 2

Number of columns in X: 3

The full output contains the frequency table for the dependent variable, the cross-
tabulation of all model variables, and the simplified design matrix. We see from the model
results that the model converged in 8 iterations.

Model Results

==============

Number of Newton-Raphson iterations: 8

Convergence: YES

Model Fit Results

==================

Test 1: Fitted model vs. intercept-only model

Initial log likelihood: -234.615310

Final log likelihood: -14.040158

Chisq value: 441.1503, df: 0, Pr(ChiSq): 0.0000

Test 2: Fitted model vs. saturated model

Deviance: 13.752628

Chisq value: 13.7526, df: 16, Pr(ChiSq): 0.6171

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 45

Maximum Likelihood Parameter Estimates

=======================================

Parameter DV Estimate Std Err Wald Chisq Pr > Chisq

Intercept 0 5.55916646 1.1197 24.6502 0.0000

heat 0 -0.08203080 0.0237 11.9452 0.0005

soak 0 -0.05677131 0.3312 0.0294 0.8639

Note that the parameter estimates match those reported in the output from PROC
CATMOD in the SAS example.

6.3 UCLA dataset

The UCLA dataset contains several variables for predicting admittance to graduate school
and is available from [11]. There are 4 variables: admit, gre, gpa, and rank, and the dataset
is tab-delimited. First we will import the dataset and print the first ten observations.

mlelr - a reference implementation of logistic regression in C

version: 1.0

mlelr-> import ucla ../data/ucla.dat \t

Importing dataset from file: ../data/ucla.dat

Number of variables found: 4

Variable names: admit gre gpa rank

New dataset created with handle: ucla

Number of observations read: 400

Import complete.

mlelr-> print ucla 10

Dataset: ucla

Number of observations: 400

Number of variables: 4

admit gre gpa rank

0.00 380.00 3.61 3.00

1.00 660.00 3.67 3.00

1.00 800.00 4.00 1.00

1.00 640.00 3.19 4.00

0.00 520.00 2.93 4.00

1.00 760.00 3.00 2.00

1.00 560.00 2.98 1.00

0.00 400.00 3.08 2.00

1.00 540.00 3.39 3.00

0.00 700.00 3.92 2.00

From this output, the variables gre and gpa appear to be continuous, while admit looks
binary and rank ranges from 1 to 4. We can confirm this by tabulating the two categorical
variables.

mlelr-> table ucla admit

Dataset: Frequency table for: admit

Number of observations: 2

Number of variables: 2

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 46

Value Freq

0.00 273.00

1.00 127.00

mlelr-> table ucla rank

Dataset: Frequency table for: rank

Number of observations: 4

Number of variables: 2

Value Freq

1.00 61.00

2.00 151.00

3.00 121.00

4.00 67.00

Next, we want to run the same model used in the SAS example at [11]. Both gre and
gpa are continuous and we don’t want to treat them as categorical so we will specify them
as direct effects in the model. For rank, however, we will treat this as a categorical variable.
Since the SAS example is using PROC LOGISTIC which uses dummy coding by default
(as opposed to full-rank center-point parameterization used by PROC CATMOD), in order
for the parameter estimates for our model to match, we need to turn on our dummy coding
option before running the model.

mlelr-> option params dummy

mlelr-> logreg ucla admit = direct.gre direct.gpa rank

The model runs and we see the summary at the top of the output:

===

Maximum Likelihood Estimation of Logistic Regression Model

===

Model Summary

==============

Dependent variable: admit

Number of independent variables: 3

Effect 1: gre (DIRECT)

Effect 2: gpa (DIRECT)

Effect 3: rank

Number of interactions: 0

Number of populations: 391

Total frequency: 400.000000

Response Levels: 2

Number of columns in X: 6

Frequency Table for Dependent Variable

=======================================

Value Freq

0.00 273.00

1.00 127.00

Note that the number of populations, 391, is very nearly equal to the total sample size
of 400. This is a consequence of working with continuous variables, and also illustrates how

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 47

foolish it would be to treat gre and gpa as categorical variables—the resulting design matrix
would be far too sparse and would very likely be unable to result in a stable model.

Note also our coding on the dependent variable is 0 and 1. In mlelr we have hard-coded
the baseline category to be the highest value, in this case 1. For binary dependent variables,
the intent is typically to model the probability of success, usually coded as 1. However, if
1 is treated as the reference category, the parameter estimates will actually be reversed in
sign vs. what one would expect. One way to get around this annoyance is to code binary
dependent variables using a 1 vs. 2 scheme. This way, success = 1 will be modeled vs.
the omitted category of not success = 2. Note that in the PROC LOGISTIC example,
they have used the ‘descending’ option. This will effectively reverse the choice of reference
category, so instead of modeling the probability of 0 vs. 1, the results will be reflecting the
probability of 1 vs. 0.

Because of the continuous variables, the crosstab of all model variables and the design
matrix occupy a lot of space in the output. In a future version of mlelr it would be nice to
specify an option to suppress this output if it isn’t wanted. In any case, here are the results
of our logistic regression model along with the parameter estimates:

Model Results

==============

Number of Newton-Raphson iterations: 6

Convergence: YES

Model Fit Results

==================

Test 1: Fitted model vs. intercept-only model

Initial log likelihood: -274.080818

Final log likelihood: -226.080692

Chisq value: 96.0003, df: 3, Pr(ChiSq): 0.0000

Test 2: Fitted model vs. saturated model

Deviance: 446.380641

Chisq value: 446.3806, df: 385, Pr(ChiSq): 0.0167

Maximum Likelihood Parameter Estimates

=======================================

Parameter DV Estimate Std Err Wald Chisq Pr > Chisq

Intercept 0 5.54144275 1.1381 23.7086 0.0000

gre 0 -0.00226443 0.0011 4.2843 0.0385

gpa 0 -0.80403755 0.3318 5.8715 0.0154

rank 0 -1.55146368 0.4178 13.7873 0.0002

rank 0 -0.87602075 0.3667 5.7059 0.0169

rank 0 -0.21125976 0.3929 0.2892 0.5907

Comparing these to the results shown in [11], you’ll notice that the signs on the estimates
are reversed, but otherwise identical. This is due to the ‘descending’ option used in PROC
LOGISTIC to reverse the order in which the baseline category would be selected. The
estimates are the same in magnitude because the dependent variable is binary, all we are
doing is reversing the interpretation of the resulting model. When the dependent variable

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 48

has more than two levels, the parameter estimates would differ in magnitude as well because
we would be using a completely different reference category. Note that this is only a matter
of interpretation using the parameter estimates. In either case, if you were to look at odds
ratios or the predicted probabilities by solving the regression equation, the results would be
the same whether you use the lowest or the highest category as the baseline.

7 The Newton-Raphson Method

In a logistic regression model, we equate the logit transform, the log-odds of the probability
of some event, to a linear combination of predictor variables weighted by parameter coeffi-
cients. In maximum likelihood estimation, we seek to find the values for the coefficients that
maximize the likelihood of the observed data occurring. The likelihood function is equiv-
alent to the joint probability density function of the multinomial distribution, except that
while the pdf expresses the probability of the observed data as a function of the parameter
coefficients, the likelihood function expresses the probability of the parameter coefficients
as a function of the observed data.

To find the set of values for the coefficients which maximize the likelihood function, we
need to evaluate the first and second derivatives of the likelihood function. A maximum
occurs where the first derivative is equal to zero and the second derivative at that point is
negative. The likelihood function itself is difficult to work with, however, the log likelihood
function is a valid substitute since the log transform will not affect the location of critical
points.

The Newton-Raphson method is a root-finding method, it is used to find the values
x for which f(x) = 0. In our case, the function whose roots we want to find is the first
derivative of the log likelihood function, and the values x are the parameter coefficients.
Recall from [1] that each iteration of Newton-Raphson will apply Eq. 23. In solving this
system of equations, we will make use of Eq. 32 for the first derivative, Eq. 37 for the second
derivative, and will use the identity in Eq. 40 which is equivalent to Eq. 23 but is a more
computationally stable approach.

To be strictly precise, our newton raphson function is really only responsible for one
iteration of the method. The complete Newton-Raphson method is more accurately repre-
sented by the complete loop in which we iterate, retrieve the new values for the coefficients,
and test for convergence. Note that while Y is our response matrix, and β is also techni-
cally a matrix of the same dimensions, we will treat β as a column vector with each set of
response functions stacked on top of one another. This makes it easier to construct the ma-
trix of second derivatives which would otherwise need to be formulated in three dimensions
if we consider β as a matrix.

static int newton_raphson (

double **X, /* design matrix, N rows by K cols */

double **Y, /* response matrix, N rows by J-1 cols */

double *n, /* vector of population counts, N rows */

int J, /* number of discrete values of Y */

int N, /* number of populations */

int K, /* number of columns in X */

double *beta0, /* starting parameters, K * J-1 rows */

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 49

double *beta1, /* parameters after this iteration */

double **xtwx,

double *loglike,

double *deviance);

In the loop from mlelr, we call each iteration like this:

nrret = newton_raphson(X, Y, n, J, N, K, beta0, beta, xtwx, loglike, deviance);

For each iteration of newton raphson, we pass as argument beta0 the starting values
of the coefficients, and we return the values from the new iteration in beta1. We will also
update the matrix of second partial derivatives, xtwx, which will be used in the calling
function to obtain the standard errors of the betas. Our function begins by allocating
memory for some arrays we will use for temporary purposes or intermediate results. This
includes a matrix pi having the same dimensions as the response matrix Y. pi holds the
predicted probabilities for each population, and each response function. We then initialize
our temporary variables to 0. This also includes two important temporary arrays that we
will rely upon to do most of the work of the function:

double *g; /* gradient vector: first derivative of ll */

double **H; /* Hessian matrix: second derivative of ll */

Our intent is to solve for beta1 using the derivation in Eq. 40. To do so we will compute
the second term by calculating XT (y−µ) and saving the results in our gradient vector, g.
Then we will matrix multiply H by beta0 to get the first part of the second [bracketed] term
in Eq. 40. Finally, we will invert H and solve for the new betas by matrix multiplication of
the newly inverted xtwx with the second term.

We begin by iterating through each population in the design matrix. Recall that our
system of equations involves one equation for each design effect K. Thus, in our loop, we
are calculating and accumulating the results for one equation at a time11.

/* main loop for each row (population) in the design matrix */

for (i = 0; i < N; i++) {

Our first task is to calculate the predicted probabilities πij for the current population i
and each response function j. Refer to Eq. 25 for the appropriate formula. Note that we
first need to calculate the the sum of Xβ, using the design matrix values for X and the
initial values of beta0 for β.

/* matrix multiplication of one row of X * Beta */

denom = 1.0;

jj = 0;

for (j = 0; j < J - 1; j++) {

11If you are used to thinking about these equations in a convenient vectorized environment like that
provided by R, Python, or Mathematica, you’ll have to forget about that now. In C, we do linear algebra
the old fashioned way!

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 50

sum1 = 0;

for (k = 0; k < K; k++)

sum1 += X[i][k] * beta0[jj++];

numer[j] = exp(sum1);

denom += numer[j];

}

/* calculate predicted probabilities */

for (j = 0; j < J - 1; j++)

pi[i][j] = numer[j] / denom;

/* omitted category */

pi[i][j] = 1.0 / denom;

We use jj as a secondary counter to keep track of the index in our beta0 array which
as noted above is formulated as a stacked array instead of a matrix. In the loop over j, we
only need to accumulate the sums of Xβ for the first J − 1 response functions, because the
probabilities for the omitted category can be determined once these are known. We store
the numerator for each response function in Eq. 25 in numer[j]. The denominator starts
with 1 and is then incremented by each numerator as we iterate through the levels of j.

Next, we increment the contribution to the log likelihood function from the current
population. See Eq. 38 and Eq. 39. We do the same to accumulate the deviance from this
population. These values are used in goodness of fit tests reported in the output if the model
converges. Note that this involves our dependency on the gsl library for the implementation
of the log gamma function. Although this is not strictly necessary to complete the logistic
regression, it is a rather essential feature to be able to measure these goodness of fit tests,
so we consider it important enough to include this functionality even if it means reliance
on an external library12.

Next we will want to increment the current population’s contribution to the first and
second derivatives. This loop will be performed once for each response function, except for
the baseline category.

/* increment first and second derivatives */

for (j = 0, jj = 0; j < J - 1; j++) {

The following code will store in q1 the parts of Eq. 32 that will later be multiplied by
X.

/* terms for first derivative, see Eq. 32 */

q1 = Y[i][j] - n[i] * pi[i][j];

Similarly, we store in w1 some terms that will be used in Eq. 37.

/* terms for second derivative, see Eq. 37 */

w1 = n[i] * pi[i][j] * (1 - pi[i][j]);

12The gsl is an excellent free resource and should be very easy to install on your development system. See
Section 8.5 for details

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 51

This next loop is very similar to what appears in the sample code from [1] on p. 21.
We increment g by multiplying q1 with X, thus completing Eq. 23. Then, using the dual
formulation for matrix W as shown in Eq. 37, we complete the multiplications required to
build H.

for (k = 0; k < K; k++) {

/* first derivative term in Eq. 23 */

g[jj] += q1 * X[i][k];

/* increment the current pop’s contribution to the 2nd derivative */

/* jprime = j (see Eq. 37) */

kk = jj - 1;

for (kprime = k; kprime < K; kprime++) {

kk += 1;

H[jj][kk] += w1 * X[i][k] * X[i][kprime];

H[kk][jj] = H[jj][kk];

}

/* jprime != j (see Eq. 37) */

for (jprime = j + 1; jprime < J - 1; jprime++) {

w2 = -n[i] * pi[i][j] * pi[i][jprime];

for (kprime = 0; kprime < K; kprime++) {

kk += 1;

H[jj][kk] += w2 * X[i][k] * X[i][kprime];

H[kk][jj] = H[jj][kk];

}

}

jj++;

}

This aspect of the algorithm is definitely the most difficult to grasp; however, once you
master it all the remaining pieces will fall neatly into place. I highly recommend sketching
out an example on paper or in a spreadsheet. The alligator example is a great case study
because the dataset is small enough to manage, and you won’t need to run through all
iterations—but studying the loops a few times will help you get a feel for how we go about
solving Eq. 40.

The alligator dataset has 8 populations N , and the design matrix with the example
model using lake and size has 5 columns K. The dependent variable, food, has 5 levels, so
there are 5 response functions J . The array of coefficients β has 20 elements, and XTWX
is a 20× 20 square matrix. The beta0, beta1, and g arrays in our code are organized such
that all the design effects for the first response function appear first, followed by the effects
for each subsequent response function (up to J − 1). So the first 5 elements are for the
5 design columns K for the first response function, where food = 1. Then the next 5 are
for food = 2, etc. The matrices xtwx and H are organized the same way. Each element is

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 52

the second partial derivative of each beta coefficient taken with respect to each other beta
coefficient.

When we begin the first iteration of Newton-Raphson, all the values for g and H are
initialized to 0. The main loop progresses once for each of the 8 populations, indexed by
i. The matrix pi has the same dimensions as Y, 8 rows (one for each population) and 5
columns (one for each response function of the dependent variable). Each element expresses
the probability that an observation in population i will take on the value j of the dependent
variable. Starting with the first population where i = 0, since all the betas are initialized
to 0, all pi[0][j] will be the same, in this case 0.2.

Within each population, we enter a loop over j and another over k. The first loop is for
the first J − 1 response functions, the second is for the K columns in the design matrix. In
the alligator dataset, this means we will loop a total of 20 times, once for each of the 20
elements of β. This allows us to increment the value of g, which will store the terms needed
to express the first derivative of the log likelihood function as formulated in Eq. 32. Within
the loop for k, we will then setup another loop over k′ in which we progressively build the
values in the H matrix.

The ‘Hessian matrix’XTWX is symmetric, so once we know the value for row 1 column
2, we also know the value for row 2 column 1. This matrix is also constructed differently to
correspond to the two formulations in Eq. 37. Since each element of this matrix is the second
partial derivative of the log likelihood function, each βkj is differentiated with respect to all
other coefficients, denoted βk′j′ .

As noted above, the array of coefficients β is organized with the K coefficients for the
first response function, then the K coefficients for the second response function, and so on.
Thus, expressed as βkj , it is indexed using the following pattern:[

β00 β10 β20 · · ·βK0 β01 β11 β21 · · ·βK1 · · ·β0J−1 β1J−1 β2J−1 · · ·βKJ−1
]T

We include the T there because β is technically a column vector. Now visualize how
XTWX is constructed, when we take the derivative of each of these elements against each

other. Recall that each element can be expressed as: ∂2l(β)
∂βkj∂βk′j′

. Here is what the matrix

looks like: 

∂2l(β)

∂β00∂β00

∂2l(β)

∂β00∂β10
· · · ∂2l(β)

∂β00∂βKJ−1

∂2l(β)

∂β10∂β00

∂2l(β)

∂β10∂β10
· · · ∂2l(β)

∂β10∂βKJ−1

...
...

. . .
...

∂2l(β)

∂βKJ−1∂β00

∂2l(β)

∂βKJ−1∂β10
· · · ∂2l(β)

∂βKJ−1∂βKJ−1


If you sketch out the full matrix, you will notice that j′ = j for a set of J − 1 square

sub-matrices along the diagonal, each of which has K dimensions. In these cells of H, we
use the formulation of Eq. 37 where j′ = j, and for all other cells, we use the alternate
formulation where j′ 6= j. In each pass of the loop over j and k—this will be a total of 20
loops in the alligator example—we update the jjth row of H and also, since the matrix is
symmetric, the jjth column.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 53

The counter jj is used to keep track of the current row in H on which we are operating,
and the counter kk is used to keep track of the column. When we enter the loop, we set kk
equal to jj because we only need to update the cells to the right of and below the current
index. Continuing with the alligator example, when we first enter the loop, we start with
jj and kk equal to 0. For the first 5 cells, j′ = j, and for the remaining 15 cells, j′ 6= j.
Just before we loop again, we increment jj. At this point, we have updated the first row
and column of H.

Next, when jj = 1, we will start at the second row and second column of H. There are
4 cells where j′ = j and the remaining 15 where j′ 6= j. Now we have updated the second
row and column of H. Each time we increment jj, we offset where in H we begin, so we have
one less element to update. When we reach the last row, when jj = 19, there is only one
cell left to update because the entire matrix up and to the left has already been updated.

After the loop over each population is complete, we have enough information to solve for
Eq. 40. At this point, the ‘gradient’ or ‘score’ vector stored in g is equivalent to XT (y−µ).
In matrix terms, this has K rows and J − 1 columns, but recall that we are “stacking”
our J − 1 columns together to form one column vector represented by g. Our matrix H,
equivalent to XTWX, is a square matrix of order K ∗ (J − 1), and β(0) is a column vector
of length K ∗ (J − 1). When we multiply them together, the result is also a column vector
of length K ∗ (J − 1). Here, we multiply H by beta0 and add the result to g.

/* compute xtwx * beta0 + x(y-mu) (see Eq. 40) */

for (i = 0; i < K * (J - 1); i++) {

sum1 = 0;

for (j = 0; j < K * (J - 1); j++)

sum1 += H[i][j] * beta0[j];

g[i] += sum1;

}

Now, what we have in g is actually the complete second term in the first line of Eq. 40.
Next, we need to invert XTWX, which we do using the following steps:

/* invert xtwx */

if (cholesky(H, K * (J - 1))) return 11;

if (backsub(H, K * (J - 1))) return 12;

if (trimult(H, xtwx, K * (J - 1))) return 13;

These are standard algorithms for inversion of a square symmetric positive definite
matrix taken from [12]. It is possible for the inversion process to fail and if any of these
functions returns a non-zero value, it most likely means the model is lost. We do not handle
this situation in mlelr but in a production environment it would be advisable to handle
these return values appropriately in the calling function. If all goes well then our matrix
xtwx now contains [XTWX]−1, so we can matrix multiply this with g to finish Eq. 40:

/* solve for new betas */

for (i = 0; i < K * (J - 1); i++) {

sum1 = 0;

for (j = 0; j < K * (J - 1); j++) {

sum1 += xtwx[i][j] * g[j];

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 54

}

beta1[i] = sum1;

}

Congratulations! Now anytime you run a logistic regression model, you know exactly
what is happening.

8 Concluding Remarks

8.1 Comments

The code is generously littered with comments. Writing comments is really an integral part
of the programming process—it greatly helps compose your thoughts and remind you what
you are actually trying to do. The fact that it also serves to help others know what you did
is a nice added bonus.

In the spirit of using this program as a teaching and learning exercise, the level of detail
provided in the comments may be excessive at times. Our goal with commenting is to point
out anything unusual, potentially controversial, or idiomatic that may require more than a
quick glance to decipher the intent of the code. At the same time, some areas are sparsely
commented because comments would only get in the way. In the Newton-Raphson routine
for example, the reader is expected to be following along with the formulas and code outline
described in the companion article, Maximum Likelihood Estimation of Logistic Regression
Models: Theory and Implementation [1], and adding excessive levels of comments here would
only detract from the flow of reading and understanding the code. Hopefully we have struck
a good balance.

As well, we hope that comments add incremental understanding, rather than more
confusion. It is often the case that comments fall out of synchronization with the code itself
and end up being wrong or out of date.

8.2 Lines of code

Counting lines of code is not as straightforward a metric as it may sound and it is often
employed as a flawed attempt at measuring the size or scope of a project. Different program-
ming styles can lead to very different counts. Lines are after all a human convenience—the
compiler doesn’t care. If you strip all newlines out of your source code, the object files will
still be the same size!

Still, the count of lines of code has its use and knowing that a program is one thousand
lines versus one hundred thousand is a clear indication of the size of the respective projects.
mlelr weighs in at about 3,000 lines including comments. This surprises many people
and interestingly, some have suspected the number to be much greater while others have
assumed it is a lot smaller. In reading this document you will clearly be able to appreciate
that a large bulk of this code is devoted to the “scaffolding” while the actual implementation
of logistic regression is really a page or two of actual code. Our mlelr function defined in
mlelr.c runs to over 500 lines, but the first 300 or so are dedicated to all the precursory
work involved in creating the design matrix, and a good part of the end of the function is

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 55

all about printing the output. The newton raphson function is about 170 lines including
comments.

So, all told, stripping out all the comments, window-dressing, memory handling, and
data structure setup, the true kernel of code necessary to carry out a logistic regression
would boil down to something around 100 or 200 lines.

8.3 Version numbering

The first public release version is numbered “1.0”. Since this is a small project, the standard
tripartite version numbering structure including major, minor, and point release numbers
is not necessary. Any point releases that address bugs or minor maintenance issues found
in this version will increment the secondary number. Development versions were numbered
“0.0.1” with a postfix indicating alpha or beta stages and a letter sequence for unique
reference. Any future version that adds substantial features will advance to “2.0”.

Version numbers are a bit of programming vanity and one shouldn’t get too worked up
about them. They’re not even the icing on the cake, more like gratuitous swirls of frosting
on top of the icing on the cake.

8.4 Future work

What we have implemented here is a basic reference implementation of logistic regression us-
ing the Newton-Raphson iterative algorithm for solving the maximum likelihood equations.
There are various alternatives to Newton-Raphson which may be explored in future work.
These include Fisher scoring, iteratively re-weighted least squares, and gradient descent
methods.

One feature mentioned in my companion article but not implemented here is the idea
of using step-halving to correct for the possibility that the Newton-Raphson algorithm
may begin to track and converge to a local maximum. We have omitted this feature here
because it is not really a part of the core algorithm, but is rather an enhancement that can
be employed in certain edge cases to “rescue” the procedure from a scenario in which it
would result in a sub-optimal solution.

The test for parameters tending toward infinity is another area that is subject to po-
tential improvement. We have not generated any test cases specifically to explore how this
works and thus cannot really provide guidance on how best to handle such a situation.

Robust handling of interactions, the ability to handle different types of interactions (e.g.
nested), would be another welcome enhancement.

The output format and precision is currently hard-coded. Parameter estimates are
printed with 8 decimal places. This is an arbitrary choice. It should be sufficient in most
applications, but in some cases having the full limit of double precision (roughly 15 decimal
places) may be necessary to produce estimates that are not unduly perturbed by rounding
error. Allowing the user to specify output precision is a feature worth considering.

Additional output details, or suppressing of output details, is another feature area which
could be improved. As suggested earlier, it would be best if printing of the model output
could be removed from the mlelr function and abstracted into a helper module which could
allow the user to specify what to do with the output—what parts and whether to print it,
an option to save results to a file, etc.—in a more flexible manner. Architecturally, it may

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 56

be more useful to have the mlelr function return an object that can then be referred to
with user-accessible commands.

Exponentiating the results, i.e. solving the regression equation to generate predicted
probabilities, or providing odds ratios would also make the output more useful.

Goodness of fit test results are currently difficult to interpret, and additional detail on
what the output of this section means would be another good area for improvement.

8.5 Development environment

Development of mlelr has been principally conducted using a virtual machine running
CentOS 6.5 with VirtualBox. This has allowed me to maintain a clean environment with
only the minimal resources necessary to generate the code and to ensure the maximum level
of portability by working in a sandbox of sorts which is unconstrained by and protected
from any custom configurations or libraries running on my client machines.

To recreate the environment used in the development of mlelr, begin by downloading
VirtualBox and the “Minimal” ISO image of CentOS. Create a new virtual machine of
type “Linux” and Version “Red Hat (64 bit)”. Under the System tab, allow 1024 MB for
Base Memory, this will be sufficient since we will not be using X windows. Under Storage,
configure a new virtual disk with 8 GB, and choose the option to allow the OS to allocate
space as needed rather than reserving the entire 8 GB all at once13.

Under Network, configure two adapters. Attach Adapter 1 to NAT. This will allow your
virtualbox to use your host operating system’s network connection using network address
translation. This is necessary because you will want to download some packages, as well as
the source for mlelr, and will need an internet connection to do so. Configure Adapter 2
as a Host-only adapter. This will create a new network vboxnet0 on your machine and will
allow you to ssh from your host OS to your virtual box.

Next, in the Storage tab, under Controller: IDE, add a disk image and browse to the ISO
image file of the CentOS Minimal ISO that you downloaded. When you start up the virtual
machine, it will then boot into the CentOS installation as if you had inserted the install CD
in your machine. When installing CentOS, provide a hostname, and be sure to configure
the network interfaces to connect automatically. When partitioning, create a small 512 MB
swap partition and allocate the remainder of the space to the ‘/’ root partition, configured
as ext4, or another filesystem of your own liking. When the installation is done, you can ssh
into your virtualbox from a terminal on your host operating system, using the appropriate
IP address assigned on your virtual network, e.g.:

ssh root@192.168.56.101

Next, you will want to run an update and add the packages necessary to compile and
link mlelr:

yum update

yum install vim wget

13If you do not plan to add more packages and are running low on space, you can reduce this to 3 GB. In
my virtualbox, df -h only reports usage of 1.3 GB, but you will need to allow some extra space for the swap
partition and other file system overhead.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 57

yum groupinstall development

yum install gsl gsl-devel

That last line will install the gsl library which is required for mlelr to run. Also it will
be a good idea to use the adduser command to add a non-root user to login and do your
work. At this point you can download the source for mlelr, untar, and make. Enjoy!

8.6 Thank you

Finally, I wish to thank everyone who has written to me in the past 12 years with comments
on my original article and expressing interest in the program that has become mlelr. I am
extremely pleased to release this to the community and in doing so hope that the time
I have spent studying logistic regression can benefit others. I welcome any comments or
questions.

If the degree of detail to which I descend in describing both the math and the code
implementation appears too pedantic at times, rest assured that this was my foremost
intention. I have always found texts and articles on the subject to gloss over the crucial
details that my puny mind requires to reach a basic level of understanding. The dreaded
“to be left as an exercise to the reader” accompanying high-level equation-laden summaries
of statistical methods is to me a careless and arrogant abrogation of the responsibility of
those who know to share that knowledge. Consider my work to be filling in those blanks
that other treatments of the topic have left empty. If, on the other hand, you find that I
am not being careful enough in detailing and explaining how this works, then please let me
know so that I may correct the text and code to make it as universally useful as possible.

Lastly, do not be intimidated (or fooled) by the fact that I can produce such a lovely and
long document as this. I assure you I barely understand this stuff myself! That is precisely
why this needs to be so long-winded. I am an amateur, and we amateurs have a duty to stick
together and help each other out. My expectation is that at this point one of my readers
will now go to GitHub, fork mlelr, make it really shine, and then do something really
amazing—cure cancer, abolish war, end poverty, forecast the opening weekend box office of
Hollywood movies. But my principal aim here has been to help the reader understand how
logistic regression works. If I have succeeded in accomplishing this humble aim, then I will
consider this work to be a success.

And now I can turn my attention to another method that has captured my imagination
ever since I first read Leo Breiman’s work back in grad school: random forests. With a
little time and luck perhaps I can give it the same treatment as I have here with logistic
regression. Check back with me in, say another 12 years. In 2027, I’m sure I will still be an
amateur, still fascinated by and eager to help explain the magic and mysteries of statistics,
and yes, I will still be coding in C.

This document was typeset using LATEX on February 2, 2015.

9 References

[1] Scott A. Czepiel. 2002. Maximum Likelihood Estimation of Logistic Regression Models:
Theory and Implementation. http://czep.net/stat/mlelr.html.

Scott A. Czepiel

mlelr: A Reference Implementation of Logistic Regression in C 58

[2] Donald E. Knuth. 1997. The Art of Computer Programming, vols. 1-3. Addison-Wesley.

[3] Al Kelley and Ira Pohl. 1998. A Book on C. 4th ed. Addison-Wesley.

[4] Brain W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language. 2nd
ed. Prentice Hall.

[5] Brian W. Kernighan and Rob Pike. 1999. The Practice of Programming. 1st ed.
Addison-Wesley.

[6] Peter van der Linden. 1994. Expert C Programming: Deep C Secrets. 1st ed. Prentice
Hall.

[7] comp.lang.c Frequently Asked Questions. http://c-faq.com/index.html.

[8] Free Software Foundation, Inc. 2014. The GNU C Library. Available from:
http://www.gnu.org/software/libc/manual/.

[9] Agresti, A. 1990. Categorical Data Analysis. 1st ed. New York: John Wiley.

[10] SAS Institute Inc. 2015. SAS/STAT User’s Guide, Version 9.3. Cary, NC: SAS Insti-
tute Inc.

[11] UCLA Statistical Consulting Group. Introduction to SAS. UCLA: Statistical Consult-
ing Group. Available from: http://www.ats.ucla.edu/stat/sas/dae/logit.htm

[12] Golub, G.H. and Van Loan, C.F. 1996. Matrix Computations. 3rd ed. Baltimore: Johns
Hopkins.

Scott A. Czepiel

	Preface
	Introduction
	Program Design
	The Language Question
	Statistical Package vs. Utility Program
	C Header Files
	Module Organization
	Makefiles
	Return Values and Function Parameters
	Second-guessing the User
	Generality and Compromise
	Wrappers
	Logging
	Constants
	Security
	Freedom

	Data Management
	Program Flow
	Installation
	Program Use
	Command Syntax
	Import a new dataset
	Print a dataset
	Univariate frequency tabulation
	Assign a weight variable to a dataset
	Set a global option
	Estimate a logistic regression model
	Other commands recognized by the parser

	Examples
	Alligator dataset
	Ingots dataset
	UCLA dataset

	The Newton-Raphson Method
	Concluding Remarks
	Comments
	Lines of code
	Version numbering
	Future work
	Development environment
	Thank you

	References

