Next: About this document ...
Up: Maximum Likelihood Estimation of
Previous: Implementation
-
- 1
- Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley.
- 2
- Cody, W.J. and Hillstrom, K.E. 1967. ``Chebyshev Approximations for the Natural Logarithm of the Gamma Function,'' Mathematics of Computation, vol. 21, pp. 198-203.
- 3
- Schafer, J.L. 2001. Lecture Notes for Statistics 544: Categorical Data Analysis I, Fall 2001. Penn State Univ. http://www.stat.psu.edu/jls/
- 4
- Draper, N.R. and Smith, H. 1981. Applied Regression Analysis. 2nd ed. New York: John Wiley.
- 5
- Dobson, A.J. 2002. An Introduction to Generalized Linear Models. 2nd ed. Boca Raton, FL: Chapman & Hall/CRC.
- 6
- Eliason, S.R. 1993. Maximum Likelihood Estimation: Logic and Practice. Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-096. Newbury Park, CA: Sage.
- 7
- Golub, G.H. and Van Loan, C.F. 1996. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins.
- 8
- Long, J.S. 1997. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage.
- 9
- Nelder, J.A. and Wedderburn, R.W.M. 1972. ``Generalized Linear Models,'' Journal of the Royal Statistical Society, Series A, vol. 135, pp. 370-384.
- 10
- Powers, D.A. and Xie, Y. 2000. Statistical Methods for Categorical Data Analysis. San Diego, CA: Academic Press.
- 11
- Press, W.H., et al. 1992. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge, UK: Cambridge.
- 12
- Ross, S. 1998. A First Course in Probability. 5th ed. Upper Saddle River, NJ: Prentice-Hall.
- 13
- SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6. 4th ed. Cary, NC: SAS Institute Inc.
- 14
- Spivak, M. 1980. Calculus. 2nd ed. Houston, TX: Publish or Perish, Inc.
Scott Czepiel
http://czep.net/contact.html