
Maximum Likelihood Estimation of Logistic

Regression Models: Theory and Implementation

Scott A. Czepiel∗

Abstract

This article presents an overview of the logistic regression model
for dependent variables having two or more discrete categorical levels.
The maximum likelihood equations are derived from the probability
distribution of the dependent variables and solved using the Newton-
Raphson method for nonlinear systems of equations. Finally, a generic
implementation of the algorithm is discussed.

1 Introduction

Logistic regression is widely used to model the outcomes of a categorical
dependent variable. For categorical variables it is inappropriate to use linear
regression because the response values are not measured on a ratio scale
and the error terms are not normally distributed. In addition, the linear
regression model can generate as predicted values any real number ranging
from negative to positive infinity, whereas a categorical variable can only
take on a limited number of discrete values within a specified range.

The theory of generalized linear models of Nelder and Wedderburn [9]
identifies a number of key properties that are shared by a broad class of
distributions. This has allowed for the development of modeling techniques
that can be used for categorical variables in a way roughly analogous to
that in which the linear regression model is used for continuous variables.
Logistic regression has proven to be one of the most versatile techniques in
the class of generalized linear models.

Whereas linear regression models equate the expected value of the de-
pendent variable to a linear combination of independent variables and their

∗Any comments or feedback concerning this article are welcome. Please visit
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 2

corresponding parameters, generalized linear models equate the linear com-
ponent to some function of the probability of a given outcome on the de-
pendent variable. In logistic regression, that function is the logit transform:
the natural logarithm of the odds that some event will occur. In linear
regression, parameters are estimated using the method of least squares by
minimizing the sum of squared deviations of predicted values from observed
values. This involves solving a system of N linear equations each having N
unknown variables, which is usually an algebraically straightforward task.
For logistic regression, least squares estimation is not capable of producing
minimum variance unbiased estimators for the actual parameters. In its
place, maximum likelihood estimation is used to solve for the parameters
that best fit the data.

In the next section, we will specify the logistic regression model for a
binary dependent variable and show how the model is estimated using max-
imum likelihood. Following that, the model will be generalized to a depen-
dent variable having two or more categories. In the final section, we outline
a generic implementation of the algorithm to estimate logistic regression
models.

2 Theory

2.1 Binomial Logistic Regression

2.1.1 The Model

Consider a random variable Z that can take on one of two possible values.
Given a dataset with a total sample size of M , where each observation is
independent, Z can be considered as a column vector of M binomial random
variables Zi. By convention, a value of 1 is used to indicate “success” and a
value of either 0 or 2 (but not both) is used to signify “failure.” To simplify
computational details of estimation, it is convenient to aggregate the data
such that each row represents one distinct combination of values of the in-
dependent variables. These rows are often referred to as “populations.” Let
N represent the total number of populations and let n be a column vector
with elements ni representing the number of observations in population i
for i = 1 to N where

∑N
i=1 ni = M , the total sample size.

Now, let Y be a column vector of length N where each element Yi is a
random variable representing the number of successes of Z for population
i. Let the column vector y contain elements yi representing the observed
counts of the number of successes for each population. Let π be a column

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 3

vector also of length N with elements πi = P (Zi = 1|i), i.e., the probability
of success for any given observation in the ith population.

The linear component of the model contains the design matrix and the
vector of parameters to be estimated. The design matrix of independent
variables, X, is composed of N rows and K + 1 columns, where K is the
number of independent variables specified in the model. For each row of the
design matrix, the first element xi0 = 1. This is the intercept or the “alpha.”
The parameter vector, β, is a column vector of length K + 1. There is one
parameter corresponding to each of the K columns of independent variable
settings in X, plus one, β0, for the intercept.

The logistic regression model equates the logit transform, the log-odds
of the probability of a success, to the linear component:

log

(

πi

1 − πi

)

=
K

∑

k=0

xikβk i = 1, 2, . . . , N (1)

2.1.2 Parameter Estimation

The goal of logistic regression is to estimate the K +1 unknown parameters
β in Eq. 1. This is done with maximum likelihood estimation which entails
finding the set of parameters for which the probability of the observed data is
greatest. The maximum likelihood equation is derived from the probability
distribution of the dependent variable. Since each yi represents a binomial
count in the ith population, the joint probability density function of Y is:

f(y|β) =

N
∏

i=1

ni!

yi!(ni − yi)!
πyi

i (1 − πi)
ni−yi (2)

For each population, there are
(

ni

yi

)

different ways to arrange yi successes
from among ni trials. Since the probability of a success for any one of the ni

trials is πi, the probability of yi successes is πyi

i . Likewise, the probability
of ni − yi failures is (1 − πi)

ni−yi .
The joint probability density function in Eq. 2 expresses the values of

y as a function of known, fixed values for β. (Note that β is related to
π by Eq. 1). The likelihood function has the same form as the probability
density function, except that the parameters of the function are reversed:
the likelihood function expresses the values of β in terms of known, fixed
values for y. Thus,

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 4

L(β|y) =
N
∏

i=1

ni!

yi!(ni − yi)!
πyi

i (1 − πi)
ni−yi (3)

The maximum likelihood estimates are the values for β that maximize
the likelihood function in Eq. 3. The critical points of a function (max-
ima and minima) occur when the first derivative equals 0. If the second
derivative evaluated at that point is less than zero, then the critical point
is a maximum (for more on this see a good Calculus text, such as Spivak
[14]). Thus, finding the maximum likelihood estimates requires computing
the first and second derivatives of the likelihood function. Attempting to
take the derivative of Eq. 3 with respect to β is a difficult task due to the
complexity of multiplicative terms. Fortunately, the likelihood equation can
be considerably simplified.

First, note that the factorial terms do not contain any of the πi. As a
result, they are essentially constants that can be ignored: maximizing the
equation without the factorial terms will come to the same result as if they
were included. Second, note that since ax−y = ax/ay, and after rearragning
terms, the equation to be maximized can be written as:

N
∏

i=1

(

πi

1 − πi

)yi

(1 − πi)
ni (4)

Note that after taking e to both sides of Eq. 1,

(

πi

1 − πi

)

= e
� K

k=0
xikβk (5)

which, after solving for πi becomes,

πi =

(

e
� K

k=0
xikβk

1 + e
� K

k=0
xikβk

)

(6)

Substituting Eq. 5 for the first term and Eq. 6 for the second term, Eq. 4
becomes:

N
∏

i=1

(e
� K

k=0
xikβk)yi

(

1 −
e
� K

k=0
xikβk

1 + e
� K

k=0
xikβk

)ni

(7)

Use (ax)y = axy to simplify the first product and replace 1 with 1+e �����
1+e � ��� to

simplify the second product. Eq. 7 can now be written as:

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 5

N
∏

i=1

(eyi

� K
k=0

xikβk)(1 + e
� K

k=0
xikβk)−ni (8)

This is the kernel of the likelihood function to maximize. However, it is
still cumbersome to differentiate and can be simplified a great deal further by
taking its log. Since the logarithm is a monotonic function, any maximum of
the likelihood function will also be a maximum of the log likelihood function
and vice versa. Thus, taking the natural log of Eq. 8 yields the log likelihood
function:

l(β) =

N
∑

i=1

yi

(K
∑

k=0

xikβk

)

− ni · log(1 + e
� K

k=0
xikβk) (9)

To find the critical points of the log likelihood function, set the first
derivative with respect to each β equal to zero. In differentiating Eq. 9,
note that

∂

∂βk

K
∑

k=0

xikβk = xik (10)

since the other terms in the summation do not depend on βk and can thus
be treated as constants. In differentiating the second half of Eq. 9, take
note of the general rule that ∂

∂x
log y = 1

y
∂y
∂x

. Thus, differentiating Eq. 9
with respect to each βk,

∂l(β)

∂βk

=

N
∑

i=1

yixik − ni ·
1

1 + e
� K

k=0
xikβk

·
∂

∂βk

(

1 + e
� K

k=0
xikβk

)

=
N

∑

i=1

yixik − ni ·
1

1 + e
� K

k=0
xikβk

· e
� K

k=0
xikβk ·

∂

∂βk

K
∑

k=0

xikβk

=

N
∑

i=1

yixik − ni ·
1

1 + e
� K

k=0
xikβk

· e
� K

k=0
xikβk · xik

=

N
∑

i=1

yixik − niπixik (11)

The maximum likelihood estimates for β can be found by setting each
of the K + 1 equations in Eq. 11 equal to zero and solving for each βk.

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 6

Each such solution, if any exists, specifies a critical point–either a maximum
or a minimum. The critical point will be a maximum if the matrix of
second partial derivatives is negative definite; that is, if every element on
the diagonal of the matrix is less than zero (for a more precise definition of
matrix definiteness see [7]). Another useful property of this matrix is that
it forms the variance-covariance matrix of the parameter estimates. It is
formed by differentiating each of the K + 1 equations in Eq. 11 a second
time with respect to each element of β, denoted by βk′ . The general form
of the matrix of second partial derivatives is

∂2l(β)

∂βk∂βk′

=
∂

∂βk′

N
∑

i=1

yixik − nixikπi

=
∂

∂βk′

N
∑

i=1

−nixikπi

= −

N
∑

i=1

nixik

∂

∂βk′

(

e
� K

k=0
xikβk

1 + e
� K

k=0
xikβk

)

(12)

To solve Eq. 12 we will make use of two general rules for differentiation.
First, a rule for differentiating exponential functions:

d

dx
eu(x) = eu(x) ·

d

dx
u(x) (13)

In our case, let u(x) =
∑K

k=0 xikβk. Second, the quotient rule for differenti-
ating the quotient of two functions:

(

f

g

)

′

(a) =
g(a) · f ′(a) − f(a) · g′(a)

[g(a)]2
(14)

Applying these two rules together allows us to solve Eq. 12.

d

dx

eu(x)

1 + eu(x)
=

(1 + eu(x)) · eu(x) d
dx

u(x) − eu(x) · eu(x) d
dx

u(x)

(1 + eu(x))2

=
eu(x) d

dx
u(x)

(1 + eu(x))2

=
eu(x)

1 + eu(x)
·

1

1 + eu(x)
·

d

dx
u(x) (15)

Thus, Eq. 12 can now be written as:

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 7

−
N

∑

i=1

nixikπi(1 − πi)xik′ (16)

2.1.3 The Newton-Raphson Method

Setting the equations in Eq. 11 equal to zero results in a system of K + 1
nonlinear equations each with K + 1 unknown variables. The solution to
the system is a vector with elements, βk. After verifying that the matrix
of second partial derivatives is negative definite, and that the solution is
the global maximum rather than a local maximum, then we can conclude
that this vector contains the parameter estimates for which the observed
data would have the highest probability of occurrence. However, solving a
system of nonlinear equations is not easy—the solution cannot be derived
algebraically as it can in the case of linear equations. The solution must be
numerically estimated using an iterative process. Perhaps the most popular
method for solving systems of nonlinear equations is Newton’s method, also
called the Newton-Raphson method.

Newton’s method begins with an initial guess for the solution then uses
the first two terms of the Taylor polynomial evaluated at the initial guess to
come up with another estimate that is closer to the solution. This process
continues until it converges (hopefully) to the actual solution. Recall that
the Taylor polynomial of degree n for f at the point x = x0 is defined as
the first n terms of the Taylor series for f :

n
∑

i=0

f (i)(x0)

i!
(x − x0)

i (17)

provided that the first n derivatives of f at x0 all exist. The first degree
Taylor polynomial is also the equation for the line tangent to f at the point
(x0, f(x0)). The point at which the tangent line crosses the x-axis, (x1, 0), is
used in the next approximation of the root to be found where f(x) = 0. The
first step in Newton’s method is to take the first degree Taylor polynomial
as an approximation for f , which we want to set equal to zero:

f(x0) + f ′(x0) · (x − x0) = 0 (18)

Solving for x, we have:

x = x0 −
f(x0)

f ′(x0)
(19)

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 8

This new value of x is the next approximation for the root. We let x1 = x
and continue in the same manner to generate x2, x3, . . ., until successive
approximations converge.

Generalizing Newton’s method to a system of equations is not difficult.
In our case, the equations whose roots we want to solve are those in Eq. 11,
the first derivative of the log-likelihood function. Since Eq. 11 is actually a
system of K + 1 equations whose roots we want to find simultaneously, it is
more convenient to use matrix notation to express each step of the Newton-
Raphson method. We can write Eq. 11 as l′(β). Let β(0) represent the vector
of initial approximations for each βk, then the first step of Newton-Raphson
can be expressed as:

β(1) = β(0) + [−l′′(β(0))]−1 · l′(β(0)) (20)

Let µ be a column vector of length N with elements µi = niπi. Note
that each element of µ can also be written as µi = E(yi), the expected value
of yi. Using matrix multiplication, we can show that:

l′(β) = XT (y − µ) (21)

is a column vector of length K + 1 whose elements are ∂l(β)
∂βk

, as derived
in Eq. 11. Now, let W be a square matrix of order N , with elements
niπi(1−πi) on the diagonal and zeros everywhere else. Again, using matrix
multiplication, we can verify that

l′′(β) = −XT WX (22)

is a K + 1 × K + 1 square matrix with elements ∂2l(β)
∂βk∂βk′

. Now, Eq. 20 can

be written:

β(1) = β(0) + [XT WX]−1 · XT (y − µ) (23)

Continue applying Eq. 23 until there is essentially no change between the
elements of β from one iteration to the next. At that point, the maximum
likelihood estimates are said to have converged, and Eq. 22 will hold the
variance-covariance matrix of the estimates.

2.1.4 Caveats

There are two cautionary notes to consider during the iteration procedure.
First, it is possible for a parameter estimate to tend to infinity. This is
usually a sign that the model is either poorly specified or is behaving badly

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 9

due to data sparseness in one or more populations. Obviously, a parameter
that tends to infinity will never converge. However, it is sometimes useful
to allow a model to converge even in the presence of infinite parameters.
To accomplish this, each estimate can be tested against a threshold above
which it is considered to be infinite. At that point, the iterations can con-
tinue while holding the infinite parameter constant, ignoring its new values
in susbsequent iterations, and exempting it from the global test for con-
vergence. The SAS System uses two criteria to test whether a parameter
estimate is tending to infinity in PROC CATMOD with the /ML option. If
(i) the absolute value of the estimate exceeds five divided by the range of
the corresponding independent variable, and (ii) the standard error of the
estimate is at least three times greater than the estimate itself.

A second cautionary note deals with a limitation of the Newton-Raphson
method. Given certain conditions, it is possible for a given estimate to
overshoot the true root in such a way that subsequent iterations enter into
a repeating cycle that will never converge. To counter this possibility at
each iteration, verify that the value for the likelihood function evaluated at
that point is in fact higher than it was during the previous iteration. If at
any point the likelihood decreases, this is a sign that the iterations have lost
track of the true root and are in danger of converging to a local maximum
or not converging at all. One strategy for dealing with this is to apply a
“step-halving” function wherein half the distance between the current and
prior estimates is tested. If the likelihood at that point is still lower than
for the last iteration then half the distance again is tested. This continues
for a reasonable number of “sub-iterations” until reaching a point where the
likelihood does increase. This is again the method used by the SAS System
in PROC CATMOD with the /ML option. We will look at these two caveats
in more detail in the section on implementation.

2.2 Multinomial Logistic Regression

This section will generalize the results of the previous section for categorical
dependent variables having two or more levels.

2.2.1 The Model

Generalizing to a multinomial dependent variable requires us to make some
notational adaptations. Let J represent the number of discrete categories
of the dependent variable, where J ≥ 2. Now, consider random variable Z
that can take on one of J possible values. If each observation is independent,

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 10

then each Zi is a multinomial random variable. Once again, we aggregate
the data into populations each of which represents one unique combination
of independent variable settings. As with the binomial logistic regression
model, the column vector n contains elements ni which represent the number
of observations in population i, and such that

∑N
i=1 ni = M , the total sample

size.
Since each observation records one of J possible values for the dependent

variable, Z, let y be a matrix with N rows (one for each population) and
J − 1 columns. Note that if J = 2 this reduces to the column vector used in
the binomial logistic regression model. For each population, yij represents
the observed counts of the jth value of Zi. Similarly, π is a matrix of the
same dimensions as y where each element πij is the probability of observing
the jth value of the dependent variable for any given observation in the ith

population.
The design matrix of independent variables, X, remains the same—it

contains N rows and K + 1 columns where K is the number of independent
variables and the first element of each row, xi0 = 1, the intercept. Let β be
a matrix with K + 1 rows and J − 1 columns, such that each element βkj

contains the parameter estimate for the kth covariate and the jth value of
the dependent variable.

For the multinomial logistic regression model, we equate the linear com-
ponent to the log of the odds of a jth observation compared to the J th

observation. That is, we will consider the J th category to be the omitted or
baseline category, where logits of the first J − 1 categories are constructed
with the baseline category in the denominator.

log

(

πij

πiJ

)

= log

(

πij

1 −
∑J−1

j=1 πij

)

=
K

∑

k=0

xikβkj
i = 1, 2, . . . , N

j = 1, 2, . . . , J − 1

(24)
Solving for πij , we have:

πij =
e
� K

k=0
xikβkj

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

j < J

πiJ =
1

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

(25)

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 11

2.2.2 Parameter Estimation

For each population, the dependent variable follows a multinomial distribu-
tion with J levels. Thus, the joint probability density function is:

f(y|β) =

N
∏

i=1

[

ni!
∏J

j=1 yij!
·

J
∏

j=1

π
yij

ij

]

(26)

When J = 2, this reduces to Eq. 2. The likelihood function is alge-
braically equivalent to Eq. 26, the only difference being that the likelihood
function expresses the unknown values of β in terms of known fixed con-
stant values for y. Since we want to maximize Eq. 26 with respect to β, the
factorial terms that do not contain any of the πij terms can be treated as
constants. Thus, the kernel of the log likelihood function for multinomial
logistic regression models is:

L(β|y) '

N
∏

i=1

J
∏

j=1

π
yij

ij (27)

Replacing the J th terms, Eq. 27 becomes:

N
∏

i=1

J−1
∏

j=1

π
yij

ij · π
ni−

� J−1

j=1
yij

iJ

=

N
∏

i=1

J−1
∏

j=1

π
yij

ij ·
π ni

iJ

π
� J−1

j=1
yij

iJ

=
N
∏

i=1

J−1
∏

j=1

π
yij

ij ·
π ni

iJ
∏J−1

j=1 π
yij

iJ

(28)

Since ax+y = axay, the sum in the exponent in the denominator of the last
term becomes a product over the first J−1 terms of j. Continue by grouping
together the terms that are raised to the yij power for each j up to J − 1:

N
∏

i=1

J−1
∏

j=1

(

πij

πiJ

)yij

· π ni

iJ (29)

Now, substitute for πij and πiJ using Eq. 24 and Eq. 25:

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 12

N
∏

i=1

J−1
∏

j=1

(e
� K

k=0
xikβkj)yij ·

(

1

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

)ni

=

N
∏

i=1

J−1
∏

j=1

eyij

� K
k=0

xikβkj ·

(

1 +

J−1
∑

j=1

e
� K

k=0
xikβkj

)

−ni

(30)

Taking the natural log of Eq. 30 gives us the log likelihood function for
the multinomial logistic regression model:

l(β) =

N
∑

i=1

J−1
∑

j=1

(

yij

K
∑

k=0

xikβkj

)

− ni log

(

1 +

J−1
∑

j=1

e
� K

k=0
xikβkj

)

(31)

As with the binomial model, we want to find the values for β which
maximize Eq. 31. We will do this using the Newton-Raphson method, which
involves calculating the first and second derivatives of the log likelihood
function. We can take the first derivatives using the steps similar to those
in Eq. 11:

∂l(β)

∂βkj

=

N
∑

i=1

yijxik − ni ·
1

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

·
∂

∂βkj

(

1 +

J−1
∑

j=1

e
� K

k=0
xikβkj

)

=
N

∑

i=1

yijxik − ni ·
1

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

· e
� K

k=0
xikβkj ·

∂

∂βkj

K
∑

k=0

xikβkj

=

N
∑

i=1

yijxik − ni ·
1

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

· e
� K

k=0
xikβkj · xik

=

N
∑

i=1

yijxik − niπijxik (32)

Note that there are (J−1) ·(K+1) equations in Eq. 32 which we want to
set equal to zero and solve for each βkj. Although technically a matrix, we
may consider β to be a column vector, by appending each of the additional
columns below the first. In this way, we can form the matrix of second
partial derivatives as a square matrix of order (J − 1) · (K + 1). For each
βkj , we need to differentiate Eq. 32 with respect to every other βkj. We can
express the general form of this matrix as:

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 13

∂2l(β)

∂βkj∂βk′j′
=

∂

∂βk′j′

N
∑

i=1

yijxik − niπijxik

=
∂

∂βk′j′

N
∑

i=1

−nixikπij

= −
N

∑

i=1

nixik
∂

∂βk′j′

(

e
� K

k=0
xikβkj

1 +
∑J−1

j=1 e
� K

k=0
xikβkj

)

(33)

Applying the quotient rule of Eq. 14, note that the derivatives of the nu-
merator and denominator differ depending on whether or not j ′ = j:

f ′(a) = g′(a) = e
� K

k=0
xikβkj · xik′ j′ = j

f ′(a) = 0 g′(a) = e
� K

k=0
xikβkj′ · xik′ j′ 6= j (34)

Thus, when j ′ = j, the partial derivative in Eq. 33 becomes:

(

1+
� J−1

j=1
e � K

k=0
xikβkj

)

·e � K
k=0

xikβkj ·xik′−e � K
k=0

xikβkj ·e � K
k=0

xikβkj ·xik′
(

1+
� J−1

j=1
e � K

k=0
xikβkj

)2

=
e � K

k=0
xikβkj ·xik′

(

1+
� J−1

j=1
e � K

k=0
xikβkj−e � K

k=0
xikβkj

)

(

1+
� J−1

j=1
e � K

k=0
xikβkj

)2

= πijxik′(1 − πij) (35)

and when j ′ 6= j, they are:

0−e �
K
k=0

xikβkj ·e �
K
k=0

xikβ
kj′ ·xik′

(

1+
� J−1

j=1
e � K

k=0
xikβkj

)2

= −πijxik′πij′ (36)

We can now express the matrix of second partial derivatives for the
multinomial logistic regression model as:

∂2l(β)

∂βkj∂βk′j′
= −

N
∑

i=1

nixikπij(1 − πij)xik′ j′ = j

=
N

∑

i=1

nixikπijπij′xik′ j′ 6= j (37)

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 14

2.2.3 Newton-Raphson

To illustrate the iterative procedure of Newton-Raphson as it applies to the
multinomial logistic regression model, we need an expression for Eq. 20. Let
µ be a matrix with N rows and J − 1 columns, the same dimensions as
y and π, with elements equal to niπij. Then, Eq. 21 expresses a matrix
with K + 1 rows and J − 1 columns, the same dimensions as β. By matrix
multiplication, the elements of this matrix are equivalent to those derived
in Eq. 32.

The expression for the matrix of second partial derivatives is somewhat
different from that derived in the binomial case, since the equations in Eq. 37
differ depending on whether or not j ′ = j.

For the diagonal elements of the matrix of second partial derivatives,
i.e., where j ′ = j, let W be a square matrix of order N , with elements
niπij(1 − πij) on the diagonal and zeros everywhere else. Then, Eq. 22
generates a K+1×K+1 matrix. However, we can only use this formulation
for the diagonal elements. For the off-diagonal elements, where j ′ 6= j, define
W as a diagonal matrix with elements niπijπik, and use the negative of the
expression in Eq. 22.

Using this dual formulation for W , each step of the Newton-Raphson
method can proceed as in the binomial logistic regression model, using
Eq. 23.

3 Implementation

The following is an outline of a skeletal implementation for logistic regres-
sion using the C programming language. The routines presented here fo-
cus on a practical application of the mathematical theory outlined in the
section above. To be useful in a real program, they would need to in-
corporate user and data interface methods, including a means of selecting
variables and constructing an appropriate design matrix. Different methods
of parameterization—dummy coding, full-rank center-point, direct specifi-
cation, and interaction effects—are not discussed here. We will also not
take into accout imputation strategies for dealing with missing values or
any other subtleties for pre-processing the data or optimizing the model-
ing process. Also omitted are the calculation of goodness-of-fit tests and
significance tests of the parameter estimates. There are also a number of
auxilliary functions which are beyond the scope of this document and will
not be covered here. For further details in any of these areas, the reader is
strongly encouraged to investigate the texts included in the References sec-

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 15

tion. Furthermore, we will not deal with error handling, memory allocation,
or compiler optimization techniques.

The function mlelr is used as the entry point to set up the iterations
that will take place in the newton_raphson function. At minimum, this
function will require the following arguments:

int mlelr (

int J, /* number of discrete values of y */

int N, /* number of populations */

int K, /* number of columns in x */

double *n, /* population counts - length N */

double **y, /* dv counts - N rows and J-1 columns */

double **pi, /* probabilities - N rows and J-1 columns */

double **x, /* design matrix - N rows and K+1 columns */

double *beta /* parameters - K+1 * J-1 rows */

double *xrange /* range of x - length K+1 */

) {

We will try to abide by the naming convention established earlier, so far as it
remains convenient. Note that n, beta, and xrange are declared as pointers
to double. In C, we can access these using array subscripts, such as n[i].
The variables y, pi, and x are each declared as pointer to pointer to double,
thus creating the effect of a matrix which can be accessed using syntax like
pi[i][j]. The array xrange is needed in the test for parameter estimates
tending toward infinity. It should contain as many elements as there are
columns in the design matrix, with each element specifying the range from
lowest to highest value for the corresponding independent variable. In this
routine, we will treat our parameter matrix β as a vector, where each column
is appended below the first. This makes it easier to construct the matrix
involving second derivatives, which we will introduce below:

/* local variables */

int i,j,k;

const int max_iter = 30;

const double eps = 1e-8;

int iter = 0;

int converged = 0;

double *beta_old;

double *beta_inf;

double **xtwx;

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 16

double loglike = 0;

double loglike_old = 0;

max_iter is the maximum number of Newton-Raphson iterations to try
before assuming that the model does not converge. eps, short for epsilon, is
the threshold below which parameter estimates from subsequent iterations
are assumed to be equal. When all the differences from the current to the
prior iteration are less than eps, we assume the model has converged. The
two arrays beta_old and beta_inf need to have space allocated to match
the dimensions of beta. beta_old is used to store the parameter estimates
from a prior iteration before starting a new one, and beta_inf is used in
the test for infinite parameters. The matrix xtwx, read XT WX , needs to
be set up with (K+1)*(J-1) rows and columns.

/* allocate space for local arrays */

.

. /* malloc code here */

.

/* initialize parameters to zero */

for (k = 0; k < (K + 1) * (J - 1); k++) {

beta[k] = 0;

beta_inf[k] = 0;

for (j = 0; j < (K + 1) * (J - 1); j++) {

xtwx[k][j] = 0;

}

}

An alternative approach would be to run a linear regression of log(πij/πiJ)
with the design matrix to obtain starting values for each beta[k]. This
initially adds more computational cycles, but will usually reduce the number
of Newton-Raphson iterations needed to bring the model to convergence.
Now we can set up the main loop as follows:

/* main loop */

while (iter < max_iter && !converged) {

/* copy beta to beta_old */

for (k = 0; k < (K + 1) * (J - 1); k++) {

beta_old[k] = beta[k];

}

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 17

The main loop will run until the parameter estimates converge, or the num-
ber of iterations reaches the maximum allowed. The first step in the loop is
to store the current values of beta in beta_old. The next step is to perform
one iteration:

/* run one iteration of newton_raphson */

loglike_old = loglike;

loglike = newton_raphson(J,N,K,n,y,pi,x,beta,xtwx);

Our newton_raphson function returns the value for the log likelihood func-
tion evaluated at the current iteration. In a production system, it would be
much safer to let this function return an error status code, since a number of
problems can arise within that routine that would then need to be handled
here.

/* test for decreasing likelihood */

if (loglike < loglike_old && iter > 0) {

.

. /* code to backtrack here */

.

}

After returning from an iteration, and verifying that the iteration completed
successfully, the next step is to check whether the value of the log likelihood
function has decreased since the previous iteration. If so, we can include
code to backtrack in a series of sub-iterations which successively halve the
distance between the current and prior iteration until a point is reached
where the likelihood does increase. If such a point is not found after some
number of sub-iterations, we conclude that the model had converged at the
prior iteration, although it may be the case that the iterative procedure has
degenerated and strayed too far from the true root. It would definitely be
necessary to inform the user that this occurred.

/* test for infinite parameters */

for (k = 0; k < (K + 1) * (J - 1); k++) {

if (beta_inf[k] != 0) {

beta[k] = beta_inf[k];

}

else {

if ((fabs(beta[k]) > (5 / xrange[k])) &&

(sqrt(xtwx[k][k]) >= (3 * fabs(beta[k])))) {

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 18

beta_inf[k] = beta[k];

}

}

}

The above code handles a test for parameter estimates tending to infinity as
outlined in the section on caveats. If an element of the array betainf is not
zero, then the value stored there is the last known value for beta[k] before it
was assumed to be infinity. We hold it constant in all subsequent iterations
so that it no longer interferes with the test for convergence. Note that
the standard error of each beta[k] is the square root of the corresponding
diagonal element of xtwx.

/* test for convergence */

converged = 1;

for (k = 0; k < (K + 1) * (J - 1); k++) {

if (fabs(beta[k] - beta_old[k]) >

eps * fabs(beta_old[k])) {

converged = 0;

break;

}

}

iter++;

} /* end of main loop */

The test for convergence requires every new parameter estimate to differ by
the prior estimate by less than the value for eps. If this condition is not
satisfied, the main loop will execute again.

The function that handles the Newton-Raphson iterations begins:

double newton_raphson(int J, int N, int K,

double *n, double **y, double **pi, double **x,

double *beta, double **xtwx) {

/* local variables */

int i, j, jj, jprime, k, kk, kprime;

double *beta_tmp;

double **xtwx_tmp;

double loglike;

double denom;

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 19

double *numer; /* length J-1 */

double tmp1, tmp2, w1, w2;

The variables beta_tmp and xtwx_tmp are temporary versions of the vari-
ables they resemble that will be used to build the new values for the current
iteration. Before continuing, these would need to have space allocated for
them with malloc, and each element should be initialized to zero. The
variable loglike will be used to store the return value for this function.

In the next step, we establish a loop for each row in the design matrix.
This is a very busy loop where most of the work of Newton-Raphson will be
accomplished. Refer to Eq. 23 as a reminder of the calculations that need
to be made. Upon first entering the loop, we calculate the values for πij for
the given row, i. This is done using Eq. 25.

/* main loop for each row in the design matrix */

for (i = 0; i < n; i++) {

/* matrix multiply one row of x * beta */

denom = 1;

for (j = 0; j < J - 1; j++) {

tmp1 = 0;

for (k = 0; k < K + 1; k++) {

tmp1 += x[i][k] * beta[j*(K+1)+k];

}

numer[j] = exp(tmp1);

denom += numer[j];

}

/* calculate predicted probabilities */

for (j = 0; j < J - 1; j++) {

pi[i][j] = numer[j] / denom;

}

Note that since we are treating beta as a vector, we need to offset its index
by the jth multiple of K + 1 before adding k to its index in the matrix
multiplication.

Next, we can calculate the ith row’s contribution to the value of the
log likelihood function. To do this, we need to consider all the terms in

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 20

Eq. 26, including the factorial terms that were omitted in the derivation of
the kernel of the log likelihood. Taking the log of Eq. 26 yields:

N
∑

i=1

[

log(ni!) +
J

∑

j=1

yij log(πij) − log(yij !)

]

(38)

Since it is highly dangerous to evaluate factorials directly, we can use the
gamma approximation, where Γ(x + 1) ≈ x!. Thus, Eq. 38 becomes:

N
∑

i=1

[

log(Γ(ni + 1)) +
J

∑

j=1

yij log(πij) − log(Γ(yij + 1))

]

(39)

We implement this in the following code:

/* add log likelihood for current row */

loglike += log_gamma(n[i] + 1);

for (j = 0, tmp1 = 0, tmp2 = 0; j < J - 1; j++) {

tmp1 += y[i][j];

tmp2 += pi[i][j];

loglike = loglike - log_gamma(y[i][j]+1) +

y[i][j] * log(pi[i][j]);

}

/* Jth category */

loglike = loglike - log_gamma(n[i]-tmp1+1) +

(n[i]-tmp1) * log(1-tmp2);

The details of the log_gamma function are beyond the scope of this article.
For more information, see [11] and [2]. Since we never explicitly store either
yiJ or πiJ , we use tmp1 to add the first J − 1 values of yij and tmp2 to add
the first J − 1 values of πij.

The following code builds the matrices in the last two terms of Eq. 23
by adding the contribution of the ith row to the first and second derivatives
of the log likelihood equations.

/* add first and second derivatives */

for (j = 0, jj = 0; j < J - 1; j++) {

tmp1 = y[i][j] - n[i] * pi[i][j];

w1 = n[i] * pi[i][j] * (1 - pi[i][j]);

for (k = 0; k < K + 1; k++) {

beta_tmp[jj] += tmp1 * x[i][k];

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 21

kk = jj - 1;

for (kprime = k; kprime < K + 1; kprime++) {

kk++;

xtwx_tmp[jj][kk] +=

w1 * x[i][k] * x[i][kprime];

xtwx_tmp[kk][jj] = xtwx_tmp[jj][kk];

}

for (jprime = j + 1; jprime < J - 1; jprime++) {

w2 = -n[i] * pi[i][j] * pi[i][jprime];

for (kprime = 0; kprime < K + 1; kprime++) {

kk++;

xtwx_tmp[jj][kk] +=

w2 * x[i][k] * x[i][kprime];

xtwx_tmp[kk][jj] = xtwx_tmp[jj][kk];

}

}

jj++;

}

}

} /* end loop for each row in design matrix */

In the code above, jj maintains a running counter of the current row of
beta_tmp and xtwx_tmp. The variable kk is used to maintain the current
column index of xtwx_tmp. The outer loop is executed for each value of j.
First, yij − niπij is calculated and stored in tmp1. Then, w1 is calculated
as niπij(1 − πij), which is the ith diagonal element in the matrix W when
j′ = j. The inner loop is executed for each k. beta_tmp[jj] is incremented
by tmp1 * x[i][k], which, after all rows are taken into account, will result
in the first derivative term in Eq. 23, XT (y − µ).

The first loop over kprime adds the current contribution to the second
derivative matrix, XT WX , where j ′ = j. We start this loop at k rather
than zero because the K + 1 × K + 1 submatrix for the current value of
j is symmetric, and once we calculate xtwx_tmp[jj][kk], we also know
xtwx_tmp[kk][jj]. Finally, a loop for each j ′ 6= j is set up to repeat the
loop over kprime using the alternate formulation for W as noted in Eq. 37.

The final step in the Newton-Raphson routine is to invert XT WX,
and solve for the next set of elements β. Matrix inversion is a complicated
subject constituting a major sub-field of numerical analysis unto itself, and
we will not cover the details here. Since XT WX is symmetric and, in most
cases, positive definite, the fastest way to invert it is through a Cholesky

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 22

factorization and backsubstitution. For more information, see [7] and [11].
For now, we will assume that the original matrix, stored in the local variable
xtwx_tmp, is still intact, and its inverse has been computed and stored in
xtwx. Note that since xtwx is passed to newton_raphson as a pointer, its
newly modified contents will be accessible to the calling routine when this
one returns. xtwx will be needed in the main routine mlelr as part of the test
for infinite parameters, as well as any future implementations of significance
tests that require the standard errors of the parameter estimates.

At last, we have all the information we need to apply Eq. 23. The direct
approach would be to perform the cross multiplication of xtwx and beta_tmp

and add the result to the contents of beta, which stores the parameter esti-
mates of the (now previous) iteration. However, the additive terms are likely
to be very small, and as a result the direct approach is highly susceptible
to roundoff error. To maintain precision, we take advantage of the following
identity:

β(1) = [XT WX]−1 · [XT WX · β(0) + XT (y − µ)]

= I · β(0) + [XT WX]−1 · XT (y − µ) (40)

which is equivalent to Eq. 23. We will do this in two steps. First, by
computing the second term [bracketed] in the first line of Eq. 40, then by
post-multiplying that term with the newly inverted xtwx:

/* compute xtwx * beta(0) + x(y-mu) */

for (i = 0; i < (K + 1) * (J - 1); i++) {

tmp1 = 0;

for (j = 0; j < (K + 1) * (J - 1); j++) {

tmp1 += xtwx_tmp[i][j] * beta[j];

}

beta_tmp[i] += tmp1;

}

/* solve for new betas */

for (i = 0; i < (K + 1) * (J - 1); i++) {

tmp1 = 0;

for (j = 0; (K + 1) * (J - 1); j++) {

tmp1 += xtwx[i][j] * beta_tmp[j];

}

beta[i] = tmp1;

}

Scott A. Czepiel
http://czep.net/contact.html

Maximum Likelihood Estimation of Logistic Regression Models 23

References

[1] Agresti, A. 1990. Categorical Data Analysis. New York: John Wiley.

[2] Cody, W.J. and Hillstrom, K.E. 1967. “Chebyshev Approximations for
the Natural Logarithm of the Gamma Function,” Mathematics of Com-
putation, vol. 21, pp. 198-203.

[3] Schafer, J.L. 2001. Lecture Notes for Statistics 544: Categorical Data
Analysis I, Fall 2001. Penn State Univ. http://www.stat.psu.edu/∼jls/

[4] Draper, N.R. and Smith, H. 1981. Applied Regression Analysis. 2nd ed.
New York: John Wiley.

[5] Dobson, A.J. 2002. An Introduction to Generalized Linear Models. 2nd
ed. Boca Raton, FL: Chapman & Hall/CRC.

[6] Eliason, S.R. 1993. Maximum Likelihood Estimation: Logic and Prac-
tice. Sage University Paper series on Quantitative Applications in the
Social Sciences, series no. 07-096. Newbury Park, CA: Sage.

[7] Golub, G.H. and Van Loan, C.F. 1996. Matrix Computations. 3rd ed.
Baltimore: Johns Hopkins.

[8] Long, J.S. 1997. Regression Models for Categorical and Limited Depen-
dent Variables. Thousand Oaks, CA: Sage.

[9] Nelder, J.A. and Wedderburn, R.W.M. 1972. “Generalized Linear Mod-
els,” Journal of the Royal Statistical Society, Series A, vol. 135, pp.
370-384.

[10] Powers, D.A. and Xie, Y. 2000. Statistical Methods for Categorical Data
Analysis. San Diego, CA: Academic Press.

[11] Press, W.H., et al. 1992. Numerical Recipes in C: The Art of Scientific
Computing. 2nd ed. Cambridge, UK: Cambridge.

[12] Ross, S. 1998. A First Course in Probability. 5th ed. Upper Saddle
River, NJ: Prentice-Hall.

[13] SAS Institute Inc. 1989. SAS/STAT User’s Guide, Version 6. 4th ed.
Cary, NC: SAS Institute Inc.

[14] Spivak, M. 1980. Calculus. 2nd ed. Houston, TX: Publish or Perish,
Inc.

Scott A. Czepiel
http://czep.net/contact.html

